The area of triangle formed by the pair of straight lines (ax+by)2 -3(bx-ay)2=0 and ax+by+c =0
Answers
Answer:
ax + by)? – 3(bx - ay)² = 0
= [ax + by + v3 (bx - ay)]
[ax + by - V3 (bx - ay)] = 0
= [(a+ 13 b)X + (-13 a + b)y]
[(a - 13 b)x + ( 13 a + b)y] = 0
: This equation represent the lines
(a + V3 b)x + (-13 a + b)y = 0 + (1),
(a - 13 b)x + ( 13 a + b)y = 0 + (2),
Let the given line be ax + by + c = 0 → (3)
If A is an angle between (1) and (3), then cosA
a(a + 3b)+b(-13a+b)
Va’ +b? Jla+ 136 )* +(-13a + b)*
a? + V3ab - 3ab + b?
Va? +b? Va? + 3b? + 213ab + 3a +b? - 213ab
a? + b2
Va? + b2 4a? +4b
BA = 60°
:: The angles between (1) and (3) are 60°, 120°
If B is an angle between (2) and (3), then cosB
a(a- 13b) +b(-13a +b)
Va? +b?/a- v3b)* +(53a+b)*
a? - V3ab + 3ab+b?
Va’ +62 Ja²3b2 - 213ab + 3a? + b2 + 2/3ab
a? + b2
1 1/2
Va? +b 4a? + 4b? 2
=
+
1
B = 60°
Step-by-step explanation:
ax + by)? – 3(bx - ay)² = 0
= [ax + by + v3 (bx - ay)]
[ax + by - V3 (bx - ay)] = 0
= [(a+ 13 b)X + (-13 a + b)y]
[(a - 13 b)x + ( 13 a + b)y] = 0
: This equation represent the lines
(a + V3 b)x + (-13 a + b)y = 0 + (1),
(a - 13 b)x + ( 13 a + b)y = 0 + (2),
Let the given line be ax + by + c = 0 → (3)
If A is an angle between (1) and (3), then cosA
a(a + 3b)+b(-13a+b)
Va’ +b? Jla+ 136 )* +(-13a + b)*
a? + V3ab - 3ab + b?
Va? +b? Va? + 3b? + 213ab + 3a +b? - 213ab
a? + b2
Va? + b2 4a? +4b
BA = 60°
:: The angles between (1) and (3) are 60°, 120°
If B is an angle between (2) and (3), then cosB
a(a- 13b) +b(-13a +b)
Va? +b?/a- v3b)* +(53a+b)*
a? - V3ab + 3ab+b?
Va’ +62 Ja²3b2 - 213ab + 3a? + b2 + 2/3ab
a? + b2
1 1/2
Va? +b 4a? + 4b? 2
=
+
1
B = 60°