Math, asked by Awantika7886, 7 months ago

THe area of triangle is 35 sq units with vertices (2, -6) , (5, 4) , and ( k , 4) then k is

Answers

Answered by Cosmique
32

Given:

  • Area of a triangle is 35 sq. units with vertices (2, -6), (5, 4) and (k, 4)

To find:

  • Value of k =?

Knowledge required:

  • Area of a triangle with vertices (x₁, y₁), (x₂, y₂), (x₃, y₃) is given by

\purple{\bigstar}\boxed{\sf{Ar(\triangle)=\mid\dfrac{1}{2}\big[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\big]\mid}}

Solution:

Let,

  • x₁ = 2 ; y₁ = -6
  • x₂ = 5 ; y₂ = 4
  • x₃ = k ; y₃ = 4

Then, Using formula for area of triangle

\implies\sf{Ar(\triangle)=\mid\dfrac{1}{2}\big[x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)\big]\mid}

\implies\sf{35=\dfrac{1}{2}\big[2(4-4)+5(4-(-6))+k(-6-4)\big]}

\implies\sf{35=\dfrac{1}{2}\big[2(0)+5(10)+k(-10)\big]}

\implies\sf{70=50-10k}

\implies\sf{10k=-20}

\implies\boxed{\boxed{\sf{k=-2}}}\;\;\;\purple{\bigstar}

Therefore,

  • value of k is -2.
Answered by Anonymous
119

\overrightarrow{\underrightarrow{ \green{ \sf \ Given:  }}}

  • Area of triangle = 35 sq. units
  • Vertices of triangle are (2,-6), (5,4) and (k,4)

\overrightarrow{\underrightarrow{ \green{ \sf \ Find:  }}}

  • What will be the value of k

\overrightarrow{\underrightarrow{ \green{ \sf \ Solution:  }}}

Now, we, know that

\sf Area  \: of \:  triangle  \: is \triangle =  \frac{1}{2}  \left|\begin{array}{ccc}x_{1} &y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{array} \right|

where,

  • Area of triangle = 35 sq. units

Since area is always positive,

So, \triangle can have positive and negative value

=> \triangle = ± 35 sq. units

Also,

 \sf x_{1}  = 2 ,  \qquad y_{1} =  - 6\\ \sf x_{2} = 5, \qquad y_{2} = 4\\ \sf x_{3} =k, \qquad y_{3} = 4

Putting values in area of Triangle

\sf \implies ±35 =  \frac{1}{2}  \left|\begin{array}{ccc}2 & - 6&1\\5&4&1\\k&4&1\end{array} \right|

\sf \implies ±35 =  \frac{1}{2}   \bigg(2\left|\begin{array}{cc}4 & 1\\4&1\end{array} \right|  - ( - 6)\left|\begin{array}{cc}5 & 1\\k&1\end{array} \right|  + 1\left|\begin{array}{cc}5 & 4\\k&4\end{array} \right|  \bigg)

\sf \implies ±35 =  \frac{1}{2} (2(4 - 4) + 6(5 - k) + 1(20 - 4k))

\sf \implies ±35 =  \frac{1}{2} (2(0) + 6(5 - k) + 1(20 - 4k))

\sf \implies ±35 =  \frac{1}{2} (30 - 6k + 20 - 4k)

\sf \implies ±35 =  \frac{1}{2} (50 - 10k)

\sf \implies ±35 \times 2 = (50 - 10k)

\sf \implies ±70= (50 - 10k)

So, 70 = 50 - 10k or -70 = 50 - 10k

 \bold{ solving \: 70 = 50 - 10k}  \\  \sf \to 70 - 50 =  - 10k  \\  \sf \to 20 =  - 10k \\  \sf \to k =  \frac{ 20}{ - 10}  =  - 2

 \bold{ solving \: -70 = 50 - 10k}  \\  \sf \to  - 70 - 50 =  - 10k  \\  \sf \to  - 120 =  - 10k \\  \sf \to k =  \frac{  - 120}{ - 10}  =  12

Hence, the required value of k is -2 or 12

Similar questions