Math, asked by Medhanshkhattar05, 2 months ago

the area of triangle opq with o(0 0) p(2 0) and q(0 2) is

Answers

Answered by riymehta06
0

Answer:

area of triangle = 1/2 × b × h

Answered by milindPB
0

Answer:

Given :-

C is the capacitance of a capacitor discharging through a resistor R.

t₁ is the time taken for the energy stored in the capacitor to reduce to half its initial value

t₂ is the time taken for the charge to reduce to one-fourth its initial value.

⇝ To Find :-

Value of t₁ / t₂

⇝ Solution :-

❒ We Know equation of discharging of a charge is :

\bf q = q_{ \circ} {e}^{-t/RC} \: - - - (1)q=q

e

−t/RC

−−−(1)

★ According To Question :

\begin{gathered} \pink {\text{At time t = t₂ }} \\ \end{gathered}

At time t = t₂

\begin{gathered}\text q = \dfrac{\text q_{ \circ}}{4} \\ \end{gathered}

q=

4

q

✏ Using (1) :

\begin{gathered}:\longmapsto\dfrac {\cancel{\text q_{ \circ}}}{4} = \cancel\text q_{ \circ} {\text e}^{ - { \text t_2/ \text{RC}}} \\ \end{gathered}

:⟼

4

q

=

q

e

−t

2

/RC

\begin{gathered} :\longmapsto\sf\dfrac{1}{4} = {e}^{-t_2/RC} \\ \end{gathered}

:⟼

4

1

=e

−t

2

/RC

★ Taking Log Both Side :

\begin{gathered}:\longmapsto \sf \log \bigg( \dfrac{1}{4} \bigg) = \log \big( {e}^{-t_2/RC} \big) \\ \end{gathered}

:⟼log(

4

1

)=log(e

−t

2

/RC

)

\begin{gathered}:\longmapsto \sf \log {(4)}^{ - 1} = \log( {e)}^{-t_2/RC} \\ \end{gathered}

:⟼log(4)

−1

=log(e)

−t

2

/RC

\begin{gathered}:\longmapsto \sf \cancel- 1( \log4) =\cancel - \dfrac{t_2}{RC}. \log \: e \\ \end{gathered}

:⟼

1(log4)=

RC

t

2

.loge

\begin{gathered}:\longmapsto \sf \log4 = \dfrac{t_2}{RC} \\ \end{gathered}

:⟼log4=

RC

t

2

\begin{gathered}:\longmapsto \sf t_2 = RC .\log4 \\ \end{gathered}

:⟼t

2

=RC.log4

\begin{gathered}:\longmapsto \sf t_2 = RC . \log{2}^{2} \\ \end{gathered}

:⟼t

2

=RC.log2

2

:\longmapsto \boxed{ \pink{ \boxed{\bf t_2 = 2\times RC \times log2}}}:⟼

t

2

=2×RC×log2

❒As Energy Stored in a capacitor is :

\begin{gathered} \text E = \frac{1}{2} \dfrac{ {\text q_{ \circ}}^{2} }{ \text{C}} \: \: - - - (2) \\ \end{gathered}

E=

2

1

C

q

2

−−−(2)

★ Let when charge is q₁ , Energy becomes E/2

So,

\begin{gathered} \sf \dfrac{E}{2} = \frac{1}{2} \frac{q_1 {}^{2} }{C} \\ \end{gathered}

2

E

=

2

1

C

q

1

2

✏ Using (2) :

\begin{gathered}:\longmapsto \sf \cancel\dfrac{1}{2} \frac{ {q_{ \circ}}^{2} }{2 \cancel C } =\cancel\dfrac{1}{2} \frac{ {q_1}^{2} }{C} \\ \end{gathered}

:⟼

2

1

2

C

q

2

=

2

1

C

q

1

2

:\longmapsto \bf q_1 = \dfrac{q_{ \circ}}{\sqrt{2}}\:\: ----(3):⟼q

1

=

2

q

−−−−(3)

✏ Using (1) :

\begin{gathered}:\longmapsto \sf q_1 = q_{ \circ} { \: e}^{ - t_1/RC} \\ \end{gathered}

:⟼q

1

=q

e

−t

1

/RC

✏ Using (3) :

\begin{gathered}:\longmapsto \sf \dfrac{ \cancel {q_{ \circ}}}{ \sqrt{2} } = \cancel{q_{ \circ}} \: {e}^{ - t_1/RC} \\ \end{gathered}

:⟼

2

q

=

q

e

−t

1

/RC

\begin{gathered}:\longmapsto \sf \dfrac{1}{ \sqrt{2} } = {e}^{ - t_1/RC} \\ \end{gathered}

:⟼

2

1

=e

−t

1

/RC

★ Taking Log Both Side :

\begin{gathered}:\longmapsto \sf\log \bigg( \dfrac{1}{ \sqrt{2} } \bigg) = \log( {e)}^{ - t_1/RC} \\ \end{gathered}

:⟼log(

2

1

)=log(e)

−t

1

/RC

\begin{gathered}:\longmapsto \sf\log(2) {}^{ - 1/2} = \log( {e)}^{ - t_1/RC} \\ \end{gathered}

:⟼log(2)

−1/2

=log(e)

−t

1

/RC

\begin{gathered}:\longmapsto \sf \cancel - \dfrac{1}{2} \log(2) = \cancel - \dfrac{t_1}{RC} \log \: e \\ \end{gathered}

:⟼

2

1

log(2)=

RC

t

1

loge

\begin{gathered}:\longmapsto \sf\dfrac{1}{2} \log2 = \dfrac{t_1}{RC} \\ \end{gathered}

:⟼

2

1

log2=

RC

t

1

:\longmapsto \boxed{ \pink{ \boxed{\bf t_2 = \frac{1}{2} \times RC \times log2}}}:⟼

t

2

=

2

1

×RC×log2

Hence,

\begin{gathered} \sf \dfrac{t_1}{t_2} = \frac{\frac{1}{2} \times \cancel{RC} \times \cancel{\log2}} { 2 \times \cancel{RC} \times \cancel{\log2}} \\ \end{gathered}

t

2

t

1

=

RC

×

log2

2

1

×

RC

×

log2

\purple{ \large :\longmapsto \underline {\boxed{{\bf \frac{t_1}{t_2} = \frac{1}{4} } }}}:⟼

t

2

t

1

=

4

1

Step-by-step explanation:

Hope it helps

Similar questions