The area of triangle PQR having vertices P(0,8),Q(0,0) and R(6,0) is
Answers
Answered by
4
Step-by-step explanation:
From R:(c, d), draw line segment RA perpendicular to the x-axis. Let O denote the origin (0,0).
area ΔPQR = area trapezoid OPRA- area ΔQAR - area ΔOPQ
=
2
1
c(a+d) -
2
1
d(c−b)-
2
1
ab=
2
1
(ac+bd−ab).
If c area ΔPQR = area trapezoid OPRA + area Δ QAR - areaΔOPQ=
2
1
c(a+d)
2
1
d(b−c)−
2
1
ab=
2
1
(ac+bd−ab).
solution
Similar questions