Math, asked by rayedipadma123, 11 months ago

The area of two circles with same center are 154sq cm and 616sq cm then the width of the concentric circle is​

Answers

Answered by mysticd
0

Answer:

\red {, Width \: of \: concentric \:circle}\green {= 7 \:cm }

Step-by-step explanation:

 Let \: radius \: of \: the \:inner \:circle = r\:cm

 Area \:of \:the \:inner \:circle = 154 \:cm^{2}

\implies \pi r^{2} = 154

 \implies \frac{22}{7} r^{2} = 154

 \implies r^{2} = 154 \times \frac{7}{22}

\implies r^{2} = 49

 \implies r = 7 \:cm

 Let \: radius \: of \: the \:Outer \:circle = R\:cm

 Area \:of \:the \:Outer \:circle = 616 \:cm^{2}

\implies \pi R^{2} = 616

 \implies \frac{22}{7} R^{2} = 616

 \implies R^{2} = 616 \times \frac{7}{22}

\implies R^{2} = 196

 \implies R = 14 \:cm

 Now , Width \: of \: concentric \:circle = R-r\\= 14 \:cm - 7 \:cm \\= 7 \:cm

Therefore.,

\red {, Width \: of \: concentric \:circle}\green {= 7 \:cm }

•••♪

Similar questions