Math, asked by bhartinavyakanak, 10 months ago

the area of two similar triangles are in the ratio 49 is to 64, then the sides of these triangles are in the ratio ​

Answers

Answered by streetburner
2

Step-by-step explanation:

\bf{\huge\mathcal{\boxed{\rm{\mathfrak\blue{Hey Mate:}}}}}

</p><p>&lt;body bgcolor="#FFDAB9"&gt;&lt;font color="Purple"&gt;</p><p>&lt;font size="5"&gt;</p><p>FOLLOW ME</p><p>&lt;/font&gt;</p><p></p><p>&lt;font color="blue"&gt;&lt;marquee direction="down" bgcolor="black"&gt;</p><p>⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️⬇️</p><p>&lt;/marquee&gt;</p><p>

ANSWER

Area 1 / Area 2 = (side 1)^2 / (side 2)^2 = 49:64

So, side 1/side 2 = 7/8

</p><p>&lt;font color="white"&gt;&lt;marquee direction="up" bgcolor="black"&gt;</p><p>⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️⬆️</p><p>&lt;/marquee&gt;</p><p>

</p><p>&lt;font color="Purple"&gt;&lt;marquee behaviour ="alternate" &gt;</p><p>Radhe Radhe</p><p>&lt;/marquee&gt;</p><p>

Answered by zahaansajid
0

Ratio of areas of similar triangles = (Ratio of side)²

Ratio of side = √(Ratio of area)

= √(49/64) = 7/8

Hope this is helpful to you....

Pls mark as brainliest...

Follow me and I'll follow back...

Similar questions