Physics, asked by fish191, 4 months ago

The areas of a rectangle and a square are equal. If the length of the rectangle is 16 cm and
breadth is 9 cm, find the side of the square.​

Answers

Answered by reenavermahw
12

Answer:

12 cm

Explanation:

Area of rectangle = Area of square

l × b = a sq

16 × 9 = a sq

144 = a sq

a = √144

a = 12

Side of square = 12 cm

Answered by DüllStâr
300

Question:

The areas of a rectangle and a square are equal. If the length of the rectangle is 16 cm and breadth is 9 cm, find the side of the square.

To find:

  • side of square

Given:

  • Area of rectangle = Area of square
  • Length of rectangle= 16cm
  • Breadth of rectangle = 9cm

Formula used:

\begin{gathered}\\\;\sf{\to\;\;Area\;of\;Square\;=\;(Side)^{2}}\end{gathered}

\begin{gathered}\\\;\sf{\to\;\;Area\;of\;Rectangle\;=\;Length\;\times\;Breadth}\end{gathered}

Answer:

First Let's find area of rectangle:

 \bigstar \boxed{ \rm Area \: of \: reactangle = length \times breadth}

by using this formula we can find value of Area of rectangle

 : \implies \sf Area \: of \: reactangle = length \times breadth \\

put values of length and breadth

 : \implies \sf Area \: of \: reactangle = 16 \times 9 \\

 : \implies \underline{ \underline{ \sf Area \: of \: reactangle =144 {cm}^{2}}}   \\

Now as we know Area of rectangle = Area of square

.•. Area of square =144cm²

Now as we know:

 \bigstar \boxed{ \rm Area \: of \: square =  {side}^{2} }

by using this formula we can find value of its sides

 : \implies \sf Area \: of \: square =  {side}^{2} \\

put value of Area of square

 : \implies \sf 144 =  {side}^{2} \\

 : \implies \sf  \sqrt{144} =  side

 : \implies \sf  \sqrt{12 \times 12} =  side

 : \implies \underline{ \underline{ \sf side = 12 \: cm}}

___________________________________

☆Know more ☆

\begin{gathered}\\\;\sf{\longrightarrow \;\;Perimeter\;of\;Square\;=\;4\;\times\;Side}\end{gathered}

\begin{gathered}\\\;\sf{\longrightarrow \;\;Perimeter\;of\;Rectangle\;=\;2\;\times\;(Length\;+\;Breadth)}\end{gathered}

\begin{gathered}\\\;\sf{\longrightarrow\;\;Area\;of\;Triangle\;=\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}\end{gathered}

\begin{gathered}\\\;\sf{\longrightarrow \;\;Area\;of\;Circle\;=\;\pi r^{2}}\end{gathered}

\begin{gathered}\\\;\sf{\longrightarrow \;\;Area\;of\;Parallelogram\;=\;Base\;\times\;Height}\end{gathered}

___________________________________

And all we are done! ✔

:D

Similar questions