Math, asked by Rakkun, 4 months ago

The areas of the two circles are in the ratio 81 : 100, then ratio of their circumferences are​

Answers

Answered by IdyllicAurora
61

Answer :-

\:\\\large{\boxed{\sf{What\;the\;Question\;Says\:?\;:-}}}

Here the concept of Areas of Circle and Circumference of Circle has been used. We are given ratio of areas of circle. Now we can apply the values and simply them. We can take those radius as r and r'. Then we can apply the value of Circumference and find its ratio.

_______________________________________________

Formula Used :-

\:\\\large{\boxed{\sf{Area\;of\;Circle\;=\;\bf{\pi r^{2}}}}}

\:\\\large{\boxed{\sf{\dfrac{\pi r^{2}}{\pi (r')^{2}}\;=\;\bf{\dfrac{81}{100}}}}}

\:\\\large{\boxed{\sf{Circumference\;of\;Circle\;=\;\bf{2 \pi r}}}}

\:\\\large{\boxed{\sf{\dfrac{2 \pi r}{\pi (r')^{2}}\;=\;\bf{Required\;Ratio}}}}

_______________________________________________

Question ::

The areas of the two circles are in the ratio 81 : 100, then ratio of their circumferences are ?

_______________________________________________

Solution :-

Given,

» Ratio of areas of two circles = 81 : 100

Let the radius of the smaller circle be r

Let the radius of the bigger circle be r'

_______________________________________________

~ For area of both circles :-

\:\\\sf{\rightarrow\;\;\:Area\;of\;Circle\;=\;\bf{\pi r^{2}}}

\:\\\sf{\rightarrow\;\;\:Area\;of\;Circle_{(r)}\;=\;\bf{\pi r^{2}}}

\:\\\sf{\rightarrow\;\;\:Area\;of\;Circle_{(r')}\;=\;\bf{\pi (r')^{2}}}

_______________________________________________

~ For the ratio of r : r'

\:\\\qquad\large{\sf{:\longrightarrow\;\;\:\dfrac{\pi r^{2}}{\pi (r')^{2}}\;=\;\bf{\dfrac{81}{100}}}}

Cancelling π from numerator and denominator, we get,

\:\\\qquad\large{\sf{:\longrightarrow\;\;\:\dfrac{r^{2}}{(r')^{2}}\;=\;\bf{\dfrac{81}{100}}}}

\:\\\qquad\large{\sf{:\longrightarrow\;\;\:\dfrac{r}{(r')}\;=\;\bf{\sqrt{\dfrac{81}{100}}\;\:=\;\;\dfrac{9}{10}}}}

\:\\\qquad\large{\sf{:\longrightarrow\;\;\:r\;:\;r'\;=\;\;\underline{\underline{\bf{9\;:\;10}}}}}

\:\\\large{\boxed{\boxed{\tt{Ratio\;\;of\;\;their\;\;radii,\;\;r\;:\;r'\;=\;\bf{9\;:\;10}}}}}

_______________________________________________

~ For ratio of their Circumference :-

From above we got that,

\:\\\qquad\large{\sf{:\Longrightarrow\;\;\:\dfrac{r}{(r')}\;=\;\;\;\bf{\dfrac{9}{10}}}}

Now multiplying both numerator and denominator on both by 2π, we get,

\:\\\qquad\large{\sf{:\Longrightarrow\;\;\:\dfrac{2\pi r}{2\pi(r')}\;=\;\;\;\bf{\dfrac{2\pi 9}{2\pi 10}}}}

Here we can cancel the common term 2π from numerator and denominator at RHS. Then,

\:\\\large{\boxed{\boxed{\tt{Ratio\;\;of\;\;their\;\;circumferencs,\;\;2\pi r\;:\;2\pi r'\;=\;\bf{9\;:\;10}}}}}

\:\\\large{\underline{\underline{\rm{Thus,ratio\;of\;circumference\;of\;given\;circles\;is\;\;\boxed{\bf{9\;:\;10}}}}}}

_______________________________________________

More to know :-

\:\\\mathtt{\leadsto\;\;\; Area\;\;of\;\;Square\;\;=\;\;(Side)^{2}}

\:\\\mathtt{\leadsto\;\;\; Area\;\;of\;\;Rectangle\;\;=\;\;Length\:\times\:Breadth}

\:\\\mathtt{\leadsto\;\;\; Area\;\;of\;\;Parallelogram\;\;=\;\;Base\:\times\:Height}

\:\\\mathtt{\leadsto\;\;\; Area\;\;of\;\;Triangle\;\;=\;\;\dfrac{1}{2}\;\times\;Base\;\times\;Height}

\:\\\mathtt{\leadsto\;\;\; Perimeter\;\;of\;\;Square\;\;=\;\;4\;\times\;Side}

\:\\\mathtt{\leadsto\;\;\; Perimeter\;\;of\;\;Rectangle\;\;=\;\;2\;\times\;(Length\:+\:Breadth)}


EliteSoul: Great
Answered by EliteSoul
18

Given,

The areas of the two circles are in the ratio 81 : 100

To find :

Ratio of their circumferences .

Solution :

Let the radius of 1st circle be r and radius of 2nd radius be R

We know, area of circle = πr²

So atq,

⇒ πr² : πR² = 81 : 100

⇒ πr²/πR² = 81/100

⇒ r²/R² = 81/100

⇒ (r/R)² = (9/10)²

r/R = 9/10

Now , circumference of circle = 2πr

⇒ Ratio of circumferences = 2πr : 2πR ​

⇒ Ratio of circumferences = 2πr/2πR

⇒ Ratio of circumferences = r/R

⇒ Ratio of circumferences = 9/10

Ratio of circumferences = 9 : 10

Therefore,

Ratio of their circumferences = 9 : 10.

Similar questions