Math, asked by Anonymous, 9 months ago

The areas of three consecutive faces of a cuboid are 12cm2

, then the volume (in cm3

) of the

cuboid is​

Answers

Answered by ankitsunny
2

Answer:

w

Step-by-step explanation:

please mark has brainliest answer

Attachments:
Answered by Anonymous
131

Answer:

⋆ DIAGRAM :

\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\put(8,5.5){l}\put(4,6.3){b}\put(11.2,7.5){h}\end{picture}

\rule{170}{1}

Let the Length, Breadth and Height of Cuboid be l, b, and h respectively.

  • Three Consecutive Faces of Cuboid can be (lb, bh, hl) i.e. 12 cm²

\dashrightarrow\tt\:\:lb=bh=hl=12\:cm^2\\\\{\scriptsize\qquad\bf{\dag}\:\:\textsf{Multiply Each Term :}}\\\\\dashrightarrow\tt\:\:lb \times bh \times hl = 12\:cm^2 \times 12\:cm^2 \times 12\:cm^2\\\\\\\dashrightarrow\tt\:\:l^2b^2h^2 =(12 \times 12 \times 12) \:cm^{(2 + 2 + 2)}\\\\\\\dashrightarrow\tt\:\:(lbh)^2 =(12 \times 12 \times 12) \:cm^6\\\\\\\dashrightarrow\tt\:\:lbh = \sqrt{(12 \times 12 \times 12) \:cm^6}\\\\{\scriptsize\qquad\bf{\dag}\:\:\textsf{Volume of Cuboid = lbh}}\\\\\dashrightarrow\tt\:\:Volume =12 \sqrt{12} \:cm^3\\\\\\\dashrightarrow\tt\:\:Volume =12 \sqrt{(2 \times 2 \times 3)} \:cm^3\\\\\\\dashrightarrow\tt\:\:Volume =12 \times 2 \sqrt{3} \:cm^3\\\\\\\dashrightarrow\:\:\underline{\boxed{\tt Volume = 24\sqrt{3} \: {cm}^{3}}}

Similar questions