Math, asked by Munazermir401, 2 months ago

the arihmatetic mean of two numbers 6. if the geometric mean is also 6, then find the numbers

Answers

Answered by suhail2070
0

Step-by-step explanation:

 \frac{ \alpha  +  \beta }{2}  =  \frac{6}{1}   \\  \\  \alpha  \beta  = 6 \\  \\  \alpha  +  \beta  = 12 \\  \\  \alpha  +  \frac{6}{ \alpha }  = 12 \\  \\  { \alpha }^{2}   - 12 \alpha  + 6 = 0 \\  \\  \alpha  =  \frac{12 +  \sqrt{144 - 24} }{2 }  =  \frac{12 +  \sqrt{120} }{2}  =  \frac{12 + \sqrt{4 \times 30}  }{2}  =  \frac{12 + 2 \sqrt{30} }{2}  = 6  + \sqrt{30}  \\  \\  \beta  = 6 -  \sqrt{30}  \\

numbers \: are \:  \: 6 +  \sqrt{30}  \:  \: and \:  \:  \:  \: 6 -  \sqrt{30} .

Similar questions