Economy, asked by arup1478, 8 months ago

The arithmetic mean and the standard deviation of a series of 20 items are 20cms and 5cms respectively.But while calculating them an items 13 was misread as 30 .

Answers

Answered by vaishnavikalbhor3636
4

Explanation:

Now give me a thanks plzzzz

Attachments:
Answered by mathdude500
0

Appropriate Question:

The arithmetic mean and the standard deviation of a series of 20 items are 20cms and 5cms respectively.But while calculating them an items 13 was misread as 30. Find the correct mean and correct standard deviation.

Answer:

\sf \: \boxed{\begin{aligned}& \qquad \:\sf \:Correct \: mean \: = \:  \dfrac{383}{20} = 19.15 \: \qquad \: \\ \\& \qquad \:\sf \: Correct \: standard \: deviation \: = \: 4.66 \: \end{aligned}} \qquad \: \\  \\

Explanation:

Given that,

Incorrect mean of 20 observations = 20 cm

Number of observations = 20

Correct value = 13

Incorrect value = 30

Incorrect standard deviation = 5 cm

Now,

\sf \: Incorrect\:mean = \dfrac{Incorrect \: \displaystyle\sum_{i=1}^{20}\sf x_i}{20}  \\  \\

\sf \: 20 = \dfrac{Incorrect \: \displaystyle\sum_{i=1}^{20}\sf x_i}{20}  \\  \\

\implies\sf \: \sf \: Incorrect \: \displaystyle\sum_{i=1}^{20}\sf x_i = 400  \\  \\

Now,

 \sf \: Correct \:\displaystyle\sum_{i=1}^{20}\sf x_i = Incorrect\:\displaystyle\sum_{i=1}^{20}\sf x_i + 13 - 30  \\  \\

 \sf \: Correct \:\displaystyle\sum_{i=1}^{20}\sf x_i = 400  - 17  \\  \\

\implies\sf \: Correct \:\displaystyle\sum_{i=1}^{20}\sf x_i = 383\\  \\

Thus,

\implies\sf \: Correct \: mean =  \dfrac{Correct \:\displaystyle\sum_{i=1}^{20}\sf x_i}{20} = \dfrac{383}{20} \\  \\

Now,

\sf \: Incorrect \: \sigma =  \sqrt{\dfrac{Incorrect\:\displaystyle\sum_{i=1}^{20}\sf  {x_i}^{2} }{20}  -  {(Incorrect\:mean)}^{2} }  \\  \\

\sf \: 5 =  \sqrt{\dfrac{Incorrect\:\displaystyle\sum_{i=1}^{20}\sf  {x_i}^{2} }{20}  -  {(20)}^{2} }  \\  \\

On squaring both sides, we get

\sf \: 25 =  \dfrac{Incorrect\:\displaystyle\sum_{i=1}^{20}\sf  {x_i}^{2} }{20}  -  400  \\  \\

\sf \: 400 + 25 =  \dfrac{Incorrect\:\displaystyle\sum_{i=1}^{20}\sf  {x_i}^{2} }{20}   \\  \\

\sf \: 425 =  \dfrac{Incorrect\:\displaystyle\sum_{i=1}^{20}\sf  {x_i}^{2} }{20}   \\  \\

\implies\sf \: \sf \: Incorrect{\displaystyle\sum_{i=1}^{20}\sf  {x_i}^{2} } = 8500   \\  \\

So,

\sf \:Correct{\displaystyle\sum_{i=1}^{20}\sf  {x_i}^{2} } = 8500 +  {(13)}^{2} -  {(30)}^{2}     \\  \\

\sf \:Correct{\displaystyle\sum_{i=1}^{20}\sf  {x_i}^{2} } = 8500 +  169 - 900     \\  \\

\implies\sf \: \sf \:Correct{\displaystyle\sum_{i=1}^{20}\sf  {x_i}^{2} } = 7769     \\  \\

Thus,

\sf \: Correct \: \sigma =  \sqrt{\dfrac{Correct\:\displaystyle\sum_{i=1}^{20}\sf  {x_i}^{2} }{20}  -  {(Correct\:mean)}^{2} }  \\  \\

\sf \: Correct \: \sigma =  \sqrt{\dfrac{7769}{20}  -  {\bigg(\dfrac{383}{20} \bigg) }^{2} }   \\  \\

\sf \: Correct \: \sigma =  \sqrt{\dfrac{7769}{20}  -  \dfrac{146689}{400} }   \\  \\

\sf \: Correct \: \sigma =  \sqrt{\dfrac{155380 - 146689}{400} }   \\  \\

\sf \: Correct \: \sigma =  \sqrt{\dfrac{8691}{400} }   \\  \\

\sf \: Correct \: \sigma =   \dfrac{ \sqrt{8691} }{20}    \\  \\

\sf \: Correct \: \sigma =   \frac{ 93.22 }{20}    \\  \\

\implies\sf \: \sf \: Correct \: \sigma =  4.66  \\  \\

Hence,

\implies\sf \: \boxed{\sf \: \sf \: Correct \: standard \: deviation \:is \: 4.66 \: } \\  \\

Hence,

\implies\sf \: \boxed{\begin{aligned}& \qquad \:\sf \:Correct \: mean \: = \:  \dfrac{383}{20} = 19.15 \: \qquad \: \\ \\& \qquad \:\sf \: Correct \: standard \: deviation \: = \: 4.66 \: \end{aligned}} \qquad \: \\  \\

Similar questions