Math, asked by Aruk123, 10 months ago

The arithmetic mean of 12 observations is7.5.If the arithmetic mean of 7 of these observations is 6.5,the mean of remaining observations is?

Answers

Answered by Alcaa
6

Mean of remaining observations is 8.9.

Step-by-step explanation:

We are given that the arithmetic mean of 12 observations is 7.5. The arithmetic mean of 7 of these observations is 6.5 and we have to find the mean of remaining observations.

Now, the mean of any data is given by the following formula;

               \text{Mean}= \frac{\text{Sum of all observations}}{\text{Total number of observations}}

                                   Or

                     \bar X = \frac{\sum X}{n}  

So, the arithmetic mean of 12 observations is given as 7.5, i.e;

                      \bar X = \frac{\sum X_1_2}{n}

where, \sum X_1_2 = Sum of all 12 observations  

                      7.5  =  \frac{\sum X_1_2}{12}

So,  \sum X_1_2 = 7.5 \times 12  =  90.

Now, also the arithmetic mean of 7 of these observations is 6.5;

                   Mean of 7 observations = \frac{\sum X_7}{7}

                                6.5  =  \frac{\sum X_7}{7}

where, \sum X_7 = Sum of 7 of these observations

So,  \sum X_7 = 6.5 \times 7  =  45.5.

Now, the sum of remaining 5 observations is  \sum X_5, that is;

                     \sum X_1_2 = \sum X_7 + \sum X_5

                      \sum X_5 = \sum X_1_2 -\sum X_7

                                = 90 - 45.5 = 44.5

Hence, the mean of remaining 5 observations =  \frac{\sum X_5}{5}

                                                                              = \frac{44.5}{5} = 8.9

Therefore, the mean of remaining observations is 8.9.

Similar questions