Math, asked by rajeshadsul998, 4 months ago


The arithmetic mean of five numbers is 8, one item 15 is replaced by 5, what
is the new arithmetic mean

Answers

Answered by sumanagarwala254
12

Answer:

I HOPE IT HELPS U DEAR PLZ MARK ME AS BRAINLIEST

Step-by-step explanation:

Mean of 10 number is 20.

Sum of 10 numbers = 200

When each number is multiplied by 2 and 5 is added to each number, new sum = 2×200+10×5=450

Now, new mean =  

10

450

​  

=45

Answered by krishnaanandsynergy
0

Answer:

We have the arithmetic mean of five numbers is 8. Now one number is replaced by another number. So we should find the new arithmetic mean.

Final Answer: New arithmetic mean: 6

Step-by-step explanation:

We consider that five numbers are, x_{1}, x_{2},x_{3},x_{4},x_{5}. But we know the one number 15. Their arithmetic mean =8.

Formula for arithmetic mean =\frac{sum of the given numbers}{number of values}

That is,      arithmetic mean   =\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}{5}

Already we know, x_{5} =15. arithmetic mean =8. Now apply this value in the above equation.

That is,           \frac{x_{1}+x_{2}+x_{3}+x_{4}+15}{5}=8

           x_{1}+x_{2}+x_{3}+x_{4}+15=40

                   x_{1}+x_{2}+x_{3}+x_{4}=40-15

                   x_{1}+x_{2}+x_{3}+x_{4}=25  ----------------------(1)

Now that number x_{5} =15 is replaced by 5. New arithmetic mean = ?

For that we should use the same formula. New arithmetic mean is considered as x.

That is,              \frac{x_{1}+x_{2}+x_{3}+x_{4}+5}{5}=x  

              x_{1}+x_{2}+x_{3}+x_{4}+5=5x

Substitute equation(1) in the above equation.

                                      25+5=5x   ⇒ (x_{1}+x_{2}+x_{3}+x_{4}=25)

                                             5x=25+5

                                             5x=30

                                               x=\frac{30}{5}

         New arithmetic mean x=6

Similar questions