Math, asked by amar6880, 1 year ago

The average marks of 15 students of a class
was increased by 3 when three of them with
marks 70, 20 and 60 were replaced by X, Y&Z.
Find the average of X, Y & Z.​

Answers

Answered by sanjeevk28012
2

Given :

The number of students in class = 15

The marks of three students = 70 , 20 , 60

The average  marks of 15 students increase by 3 , when new students replace is X , Y , Z

To Find :

The average marks of students X , Y , Z

Solution :

Let The average of 15 students = A

Or,       \dfrac{x_1+x_2+x_3+..........+x_1_5}{15}   = A

Or, \dfrac{x_1+x_2+x_3+..........+x_1_2+70+20+60}{15} = A

Or, x_1+x_2+x_3............+x_1_2 + 150 = 15 A

 , x_1+x_2+x_3............+x_1_2 = 15 A - 150

Now,

The Average is increase by 3 when X, Y , Z replace students marks 70 , 20 , 60

Or, \dfrac{x_1+x_2+x_3+..........+x_1_2+X+Y+Z}{15} = A + 3

Or, , x_1+x_2+x_3............+x_1_2 + X + Y + Z = 15 ( A + 3 )

Or, 15 A - 150  + X + Y + Z = 15 ( A + 3 )

Or,  X + Y + Z = 15 ( A + 3 ) - ( 15 A - 150 )

Or,  X + Y + Z = 15 A + 45 - 15 A + 150

Or,  X + Y + Z = 195

Again

The average of X , Y , Z = \dfrac{X+Y+Z}{3}

                                       = \dfrac{195}{3}

                                       = 65

Hence, The The average marks of X , Y , Z students is 65  . Answer

Similar questions