Math, asked by yogisrinivas182, 4 months ago

The average of 5 number is 496 if 2 of then are 117 and 140 find the average of remaining three number

Answers

Answered by ShírIey
118

Given: The average of 5 number is 496. If 2 of them are 117 and 140.

Need to find: The average of remaining three numbers.

❒ Let the five numbers be \sf x_{1}, x_{2}, x_{3}, x_4 \;and\; x_5.

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀

⠀⠀⠀⠀⠀⠀

\underline{\bf{\dag} \:\mathfrak{As\; we \; know \; that \;  :}}

\star\;\boxed{\sf{\pink{Average = \dfrac{ Sum\; of\; observation}{Total \; number \; of \; observation}}}}

⠀⠀⠀⠀

Also,

  • The average of 5 number is 496.

⠀⠀⠀⠀

Therefore,

:\implies\sf 496 = \dfrac{ x_1 + x_2 + x_3 + x_4 + x_5}{5} \\\\\\:\implies\sf Numbers = 496 \times 5 \\\\\\:\implies{\underline{\boxed{\frak{\purple{ 2480}}}}}\;\bigstar

⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀

\qquad\quad\boxed{\bf{\mid{\overline{\underline{\bigstar\: According\: to \; the\; Question \: :}}}}\mid}\\\\

⠀⠀⠀⠀

  • The average of 5 number is 496. And, If two of them are 117 and 140.

⠀⠀⠀⠀

Therefore,

⠀⠀⠀⠀

  • \sf x_1 = 117
  • \sf x_2 = 140

⠀⠀⠀⠀

Now,

⠀⠀⠀⠀

:\implies\sf 117 + 140 + x_3 + x_4 + x_5 = 2480  \\\\\\:\implies\sf x_3 + x_4 + x_5 = 2480 - 257 \\\\\\:\implies{\underline{\boxed{\frak{\pink{ x_3 + x_4 + x_5 =  2223}}}}}\;\bigstar

⠀⠀⠀⠀

  • By using same formula, finding the average of remaining three numbers.

Hence,

⠀⠀⠀⠀⠀

:\implies\sf \dfrac{x_3 + x_4 + x_5}{3} \\\\\\:\implies\sf \cancel\dfrac{ 2223}{3} \\\\\\:\implies{\underline{\boxed{\frak{\purple{741}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀

\therefore{\underline{\sf{Hence, \: the\; average\; of \: remaining \; three \; numbers \;is \; \bf{741}.}}}

Answered by ItzBrainlyBeast
241

\LARGE\mathfrak{\underline{\underline{ Given :-}}}

\large: \: \mapsto\texttt{Average of 5 numbers = 496}\\\\\large: \: \mapsto\texttt{2 numbers of them = 117 , 140}

__________________________________________________________

\LARGE\mathfrak{\underline{\underline{ To \: \: \: find :-}}}

\large\qquad{: \: \mapsto\texttt{Average of the remaining numbers}}

__________________________________________________________

\LARGE\mathfrak{\underline{\underline{Formula :-}}}

\large\qquad{: \: \Longrightarrow\underline{\boxed{\textsf{\textcolor{red}{Average =  $\cfrac{Sum \: \: \: of \: \: \: observation}{Total \: \: \: number\: \: \:  of\: \: \:  observations}$}}}}}

__________________________________________________________

\LARGE\mathfrak{\underline{\underline{How \: \: \: To \: \: \: Solve:-}}}

  • Let's assume the numbers as a , a , a , a , a .

  • As we have been provided with the average of the 5 numbers that is 496 .

  • So by this information we can calculate the total sum of all the digits .

  • Also we have been provided with 2 numbers that are 117 , 140 . So we assum this two numbers as a and a .

  • So , we add this numbers together and subtract it from the sum of the Total number.

  • And from this final result we calculate the Average of the 3 numbers .

__________________________________________________________

\LARGE\mathfrak{\underline{\underline{Solution :-}}}

__________________________________________________________

  • First we calculate the sum of all the five numbers with the help of the Formula.

\large\: \bigstar\textsf\textcolor{orange}{\: \: \:  Average = $ \cfrac{Sum \: \: \: of \: \: \: observation}{Total \: \: \: number \: \: \: of \: \: \: observations}$}\\\\\\\large: \: \Longrightarrow\textsf{496 = $\cfrac{a_{1} + a_{2} + a_{3} + a_{4} + a_{5}}{5}$}\\\\\\\large: \: \Longrightarrow\textsf{Sum of no. = 496 × 5}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{Sum of no. = 2480  }}}

__________________________________________________________

  • We have successfully calculate the sum of all the digits.
  • So now we have to subtract the sum of 2 numbers 117 , 140 from the total sum of all the numbers.

  • We assume the two numbers as

  1. a = 117
  2. a = 140

__________________________________________________________

\large\qquad{: \: \mapsto\texttt{ $117 + 140  + a_{3} + a_{4} + a_{5}= 2480$}}\\\\\large\qquad{: \: \mapsto\texttt{$257 + a_{3} + a_{4} + a{5}= 2480 $}}\\\\\large\qquad{: \: \mapsto\texttt{$a_{3} + a_{4} + a_{5}= 2480 - 257 $}}\\\\\large\qquad{: \:\Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{$ a_{3} + a_{4} + a_{5}= 2223$}}}}

__________________________________________________________

  • So now we have also successfully calculated the sum of the 3 numbers.
  • So now we have to calculate their average , by using the formula.

__________________________________________________________

\large\: \bigstar\textsf\textcolor{orange}{\: \: \: Average = $ \cfrac{Sum \: \: \: of \: \: \: observation}{Total \: \: \: number\: \: \:  of \: \: \: observations}$}\\\\\\\large: \: \Longrightarrow\textsf{=$ \cancel\cfrac{2223}{3}$}\\\\\\\large : \: \Longrightarrow\underline{\boxed{\textsf\textcolor{purple}{Average = 741}}}

__________________________________________________________

Similar questions