Math, asked by Probotic, 10 months ago

The average of x, 3, (x-1), 5 and (2x-2) is 5, find the value of x.

Answers

Answered by mysticd
7

 Given \: the \:average\: of\: x, 3, (x-1), 5 \:and\\ (2x-2) \:is\: 5

 \boxed { \pink { Average = \frac{Sum \:of \:the \: terms }{Number \:of \: terms } }}

 \implies \frac{x + 3 + (x-1) + 5+ (2x-2) }{5} = 5

 \implies \frac{x + 3 + x-1 + 5+ 2x-2 }{5} = 5

 \implies 4x + 5 = 5\times 5

 \implies 4x  = 25 - 5

 \implies 4x  = 20

 \implies x  = \frac{20}{4}

 \implies x  = 5

Therefore.,

 \red{ Value \:of \:x } \green { = 5 }

•••♪

Answered by Anonymous
23

{ \huge{ \bold{ \underline{ \underline{ \purple{Question:-}}}}}}

The average of x, 3, (x-1), 5 and (2x-2) is 5, find the value of x.

______________________

{ \huge{ \bold{ \underline{ \underline{ \red{Answer:-}}}}}}

Given :

\implies\tt\bold{x, 3,x-1, 5\:and\:(2x-2)}

\implies\tt\bold{Average=5}

Formula Used :

\implies\tt\bold{{ \small{ \bold{ \bold{ \bold{ \green{Average=\dfrac{Sum\:of\:the\:terms}{Total\:No.\:of\:Terms}}}}}}}}

Calculating :

\implies\tt\bold{5=\dfrac{x+3+x-1+5+2x-2}{5}}

\implies\tt\bold{\dfrac{5}{1}=\dfrac{4x+5}{5}}

\implies\tt\bold{4x+5=5\times{5}}

\implies\tt\bold{4x+5=25}

\implies\tt\bold{4x=25-5}

\implies\tt\bold{4x=20}

\implies\tt\bold{x=\cancel\dfrac{20}{4}}

\implies\tt\bold{x=5}

✔So, the value of x is 5 ..

Similar questions
Math, 5 months ago