Physics, asked by shaikashwaq0461, 8 months ago

The average translational kinetic energy
of 1.5 moles of oxygen at 21°C is(in joule)​

Answers

Answered by hotelcalifornia
2

Given:

No of moles of oxygen =1.5 moles

Temperature =21^{o}C

To find:

The average Translational Kinetic energy.

Solution:

The Translational Kinetic energy, in general terms, is the energy of a body by virtue of the velocity it possesses.

 KE=\frac{1}{2}mv^{2}

For an ideal gas with mass m in surrounding temperature T, the velocity is given by,

v=\sqrt{\frac{3KT}{m} }

where, K is the Boltzmann Constant (1.38 × 10^{-23}m^{2} kg s^{-2} K^{-1}).

Hence, the Translational Kinetic energy becomes

KE=\frac{1}{2}m(\sqrt{\frac{3KT}{m} } )^{2}

KE=\frac{1}{2}m(\frac{3KT}{m} )

KE=\frac{3}{2}KT

According to the question, we have

T=21^{o}C=294K

n=1.5

Substituting the required values, we get

KE=\frac{3}{2}(1.38*10^{-23}) (294)

KE=\frac{3}{2}(405.72) 10^{-23}

KE=608.58 × 10^{-23} J

Final answer :

Hence, the average translational kinetic energy is 6.0858 × 10⁻²¹ J.

Answered by darshit1634
1

Answer:

Given:

No of moles of oxygen =1.5 moles=1.5moles

Temperature =21^{o}C=21

o

C

To find:

The average Translational Kinetic energy.

Solution:

The Translational Kinetic energy, in general terms, is the energy of a body by virtue of the velocity it possesses.

KE=\frac{1}{2}mv^{2}KE=

2

1

mv

2

For an ideal gas with mass mm in surrounding temperature TT , the velocity is given by,

v=\sqrt{\frac{3KT}{m} }v=

m

3KT

where, KK is the Boltzmann Constant (1.381.38 × 10^{-23}m^{2} kg s^{-2} K^{-1}10

−23

m

2

kgs

−2

K

−1

).

Hence, the Translational Kinetic energy becomes

KE=\frac{1}{2}m(\sqrt{\frac{3KT}{m} } )^{2}KE=

2

1

m(

m

3KT

)

2

KE=\frac{1}{2}m(\frac{3KT}{m} )KE=

2

1

m(

m

3KT

)

KE=\frac{3}{2}KTKE=

2

3

KT

According to the question, we have

T=21^{o}C=294KT=21

o

C=294K

n=1.5n=1.5

Substituting the required values, we get

KE=\frac{3}{2}(1.38*10^{-23}) (294)KE=

2

3

(1.38∗10

−23

)(294)

KE=\frac{3}{2}(405.72) 10^{-23}KE=

2

3

(405.72)10

−23

KE=608.58KE=608.58 × 10^{-23} J10

−23

J

Final answer :

Hence, the average translational kinetic energy is 6.0858 × 10⁻²¹ J.

Similar questions