Math, asked by ashishkumarbhardwaj2, 6 months ago

The base diameter of a cone is 2.5 m and its height is 5 m. Find its volume ?


please find this question ​

Answers

Answered by Anonymous
1

Answer:

Find the volume of a cone, whose diameter is 8 cm and the height is 11 cm.

Solution:

As in previous examples:

V = π ∙ r2 ∙ h / 3

r is the determine by D/2, which is: 8cm / 2 = 4cm, insert the value of r we have:

V = π ∙ 42 ∙ 11 / 3

V = 552.64/3 cm3

V = 184.21 cm3

Thus the volume of the cone is 184.21 cm3.

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
6

Answer:

\setlength{\unitlength}{1cm}\begin{picture}(6, 4)\linethickness{0.26mm}\qbezier(5.8,2.0)(5.8,2.3728)(4.9799,2.6364)\qbezier(4.9799,2.6364)(4.1598,2.9)(3.0,2.9)\qbezier(3.0,2.9)(1.8402,2.9)(1.0201,2.6364)\qbezier(1.0201,2.6364)(0.2,2.3728)(0.2,2.0)\qbezier(0.2,2.0)(0.2,1.6272)(1.0201,1.3636)\qbezier(1.0201,1.3636)(1.8402,1.1)(3.0,1.1)\qbezier(3.0,1.1)(4.1598,1.1)(4.9799,1.3636)\qbezier(4.9799,1.3636)(5.8,1.6272)(5.8,2.0)\put(0.2,2){\line(1,0){5.6}}\put(3,2){\line(0,2){4.5}}\put(2.5,1.6){\sf{2.5 m}}\qbezier(.2,2.05)(.7,3)(3,6.5)\qbezier(5.8,2.05)(5.3,3)(3,6.5)\put(2.2,4){\sf 5 m}\put(3,2.02){\circle*{0.15}}\put(2.7,2){\dashbox{0.01}(.3,.3)}\end{picture}

  • Diameter of A cone = 2.5 m
  • Height = 5 m

\displaystyle\underline{\bigstar\:\textsf{According to the given Question :}}

  • First we shall find the radius of the cone which will be equal to half the diameter

\displaystyle\sf :\implies Radius = \dfrac{Diameter}{2}\\\\

\displaystyle\sf :\implies Radius = \dfrac{2.5}{2}\\\\

\displaystyle\sf :\implies Radius = 1.25 \ m

  • So now we have the values of height and the radius of the cone. So we shall get our Answer by simply substituting them on the formula

\displaystyle\sf \dashrightarrow Volume = \dfrac{1}{3} \pi r^2h\\\\

\displaystyle\sf \dashrightarrow Volume = \dfrac{1}{3} \times \dfrac{22}{7} \times 1.25^2 \times 5\\\\

\displaystyle\sf \dashrightarrow Volume = \dfrac{1}{3}\times \dfrac{22}{7} \times 1.5625\times 5\\\\

\displaystyle\sf \dashrightarrow Volume = \dfrac{1}{3} \times \dfrac{22}{7} \times 7.8125\\\\

\displaystyle\sf \dashrightarrow Volume = \dfrac{22}{21} \times 7.8125\\\\

\displaystyle\sf \dashrightarrow Volume = 1.04\times 7.8125\\\\

\displaystyle\sf \dashrightarrow \underline{\boxed{\sf Volume = 8.125 \ m^3}}

\displaystyle\therefore\:\underline{\textsf{Volume of the cone is \textbf{ 8.125 m$\sf {}^3 $}}}

Similar questions