The base of a cone with radius 15 cm and slant height 25 cm is hemispherical.Find the volume of this solid
(p = 3.14)
Answers
Solution:
Given:
⇒ Radius of cone (r) = 15 cm
⇒ Slant Height of cone (l) = 25 cm
To Find:
⇒ Volume of solid
Formula used:
Now, firstly we will find the height of the cone by Pythagoras theorem.
⇒ l² = r² + h²
⇒ 25² = 15² + h²
⇒ 625 = 225 + h²
⇒ 625 - 225 = h²
⇒ 400 = h²
⇒ h = ±20
⇒ h = 20 cm
Now, total volume of solid = Vol. of cone + Vol. of hemisphere
⇒ Total volume = 4710 + 7065
⇒ Total volume = 11775 cm³
Hence, volume of solid is 11775 cm³.
Answer:
⟹Volumeofcone=
2
1
πr
2
h
\sf{\implies Volume\;of\;hemisphere=\dfrac{2}{3}\pi r^{3}}⟹Volumeofhemisphere=
3
2
πr
3
Now, firstly we will find the height of the cone by Pythagoras theorem.
⇒ l² = r² + h²
⇒ 25² = 15² + h²
⇒ 625 = 225 + h²
⇒ 625 - 225 = h²
⇒ 400 = h²
⇒ h = ±20
⇒ h = 20 cm
\sf{\implies Now,\;volume\;of\;cone=\dfrac{1}{3}\pi r^{2}h}⟹Now,volumeofcone=
3
1
πr
2
h
\sf{\implies Volume\;of\;cone=\dfrac{1}{3}\times 3.14\times 15\times 15\times 20}⟹Volumeofcone=
3
1
×3.14×15×15×20
\sf{\implies Volume\;of\;cone=4710\;cm^{3}}⟹Volumeofcone=4710cm
3
\sf{\implies Now, volume\;of\;hemisphere=\dfrac{2}{3}\pi r^{3}}⟹Now,volumeofhemisphere=
3
2
πr
3
\sf{\implies Volume\;of\;hemisphere=\dfrac{2}{3}\times 3.14\times 15\times 15\times 15}⟹Volumeofhemisphere=
3
2
×3.14×15×15×15
\sf{\implies Volume\;of\;hemisphere=7065\;cm^{3}}⟹Volumeofhemisphere=7065cm
3
Now, total volume of solid = Vol. of cone + Vol. of hemisphere
⇒ Total volume = 4710 + 7065
⇒ Total volume = 11775 cm³
Hence, volume of solid is 11775 cm³.