The base of a cone with radius 15 cm and slant height 25 cm is hemispherical. Find
I the volume of this solid. (n = 3.14)
Answers
Answered by
11
Solution:
Given:
⇒ Radius of cone (r) = 15 cm
⇒ Slant Height of cone (l) = 25 cm
to find :
⇒ Volume of solid
Formula used:
=>volume of cone = 1/2πr².h
=>volume of hemisphere = 2/3πr³
Now, firstly we will find the height of the cone by Pythagoras theorem.
⇒ l² = r² + h²
⇒ 25² = 15² + h²
⇒ 625 = 225 + h²
⇒ 625 - 225 = h²
⇒ 400 = h²
⇒ h = ±20
⇒ h = 20 cm
==>Now volume of cone = 1/3πr².h
=>volume of cone = 1/3 *3.14 * 15 * 15 * 20
=>volume of cone = 4710cm³
==> Now , volume of hemisphere = 2/3πr³
=>volume of hemisphere = 2\3 * 3.14 * 15 * 15 * 15
=> volume of hemisphere = 7065cm³
Now, total volume of solid = Vol. of cone + Vol. of hemisphere
⇒ Total volume = 4710 + 7065
⇒ Total volume = 11775 cm³
Hence, volume of solid is 11775 cm³
#hopeithelps..
Similar questions