Math, asked by Anonymous, 10 months ago

The base of a rectangular field is three times altitude. if the cost of sowing the field at ₹960 per hectare is ₹12960, find its base and height.​

Answers

Answered by Anonymous
77

Correct Question

The base of a triangular field is three times altitude. if the cost of sowing the field at ₹960 per hectare is ₹12960, find its base and height.

⠀⠀

 \bf{ \green{\underline{\underline{ Solutions :}}}} \\  \\  \sf{Total \: cost \: of \: sowing \: the \: field =  Rs. \: 12960} \\  \\  \sf{Rate \:per \: hectare = Rs. \: 960 } \\  \\  \sf{Area  =  \frac{total \: cost}{rate}  =   \left(\frac{12960}{960}  \right)\: hectare } \\  \\  \implies \sf13.5 \: hectares \\  \\  \sf{ \implies (13.5 \times 10000) {m}^{2} } \\  \\  \implies \sf{135000} \:  {m}^{2}  \\  \\  \sf{Let \: the \: altitude \: of \: the \: field \: be \: x \: meters.} \\  \\  \sf{Then \: its \: base  = 3x \: meters.} \\  \\  \sf{Area =  \left( \frac{1}{2}  \times base \times height \right)} \\  \\  \sf{ \implies  \left( \frac{1}{2} \times 3x \times x \right) } {m}^{2}  \\  \\  \sf{ \implies  \left( \frac{3 {x}^{2} }{2}  \right)} {m}^{2}  \\  \\  \sf{ \therefore \:  \frac{3 {x}^{2} }{2} } = 135000 \\  \\  \sf{ \implies  {x}^{2} } =  \left(135000 \times \frac{2}{3}  \right) \\  \\  \implies \sf{90000} \\  \\  \implies\sf x =  \sqrt{90000}  = 300 \\  \\  \sf{\purple{\therefore \:  base = (3 \times 300)m = 900 \: m \: and \:}}  \\ \sf{ \purple{altitude = 300 \: m}}

Answered by Anonymous
729

Given : Base of a triangular field is 3 times the altitude & Cost of sowing field at Rs 960 is Rs 12960.

To Find : Find the meaure of base and height ?

_________________________

Solution : Let the altitude of field be x.

~

Here, Total cost of sowing field is Rs 12960 and rate per hectare is Rs 960.

  • \leadstoBase of field = 3(x)

\qquad{\sf:\implies{Area~=~\dfrac{Total~cost}{Rate}}}

\qquad{\sf:\implies{\Bigg(\dfrac{12960}{960}\Bigg)~hectares}}

\qquad{\sf:\implies{13.5~hectares}}

~

  • 1 hectare = 10000 m² so
  • 13.5 hectares = 13.5(10000)m²

~

◗Total area of field = 135000 m²

~

\underline{\frak{As~ we ~know~ that~:}}

  • \boxed{\sf\pink{Area~of~Triangle_{\triangle}~=~\dfrac{1}{2}\bigg(Base\bigg)\bigg(Height\bigg)}}

~

\qquad{\sf:\implies{135000~=~\dfrac{1}{2}\bigg(3x\bigg)\bigg(x\bigg)}}

\qquad{\sf:\implies{135000~=~\dfrac{3x^2}{2}}}

\qquad{\sf:\implies{x^2~=~135000\bigg(2\bigg)}}

\qquad{\sf:\implies{x^2~=~\cancel\dfrac{270000}{3}}}

\qquad{\sf:\implies{x^2~=~90000~}}

\qquad{\sf:\implies{x~=~\sqrt{90000}}}

\qquad:\implies{\underline{\boxed{\frak{\pink{x~=~300}}}}}

~

Hence,

  • \underset{\blue {\bf Required\ Answer}}{\underbrace{\boxed{\frak{\pink{Measure~of~\dfrac{Altitude~is~x~=~300m}{Base~is~3x~=~3(300)~=~900m}}}}}}
Similar questions