Math, asked by KonikaGupta, 14 days ago

The base of a right-angled traingle measures 48 cm and its hypotenuse measures 50 cm . Find the area of the traingle.

with full solution please​

Answers

Answered by Anonymous
108

\frak{Given}\begin{cases}\sf{\;\;\;Base\;of\;the\;triangle=\frak{48\;cm}}\\\sf{\;\;\;Hypotenuse\;of\;the\;triangle=\frak{50\;cm}}\end{cases}

\frak{To\;find:} Area of the triangle?

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

\underline{\pink{\mathcal{\bigstar\;BY\;USING\;PYTHAGORAS\;THEOREM\;:}}}

⠀⠀⠀

\begin{gathered}:\implies\sf{(AC)^2=(AB)^2+(BC)^2}\\\\\\:\implies\sf{(50)^2=(AB)^2+(48)^2}\\\\\\:\implies\sf{2500=(AB)^2+2304}\\\\\\:\implies\sf{2500-2304=(AB)^2}\\\\\\:\implies\sf{196=(AB)^2}\\\\\\:\implies\sf{AB=\sqrt{196}}\\\\\\:\implies\underline{\boxed{\frak{\pmb{AB=14\;cm}}}}\;\bigstar\end{gathered}

\therefore\;{\underline{\textsf{Hence,\;the\;height\;of\;the\;triangle\;is\;{\textbf{14\;cm}}}.}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━⠀⠀

As we know that,

To calculate the area of a right-angled triangle formula is given by :

⠀⠀⠀

\qquad\star\;\underline{\boxed{\sf{\pmb{Area\;_{\triangle}=\dfrac{1}{2}\times Base\times Height}}}}

⠀⠀⠀

Therefore,

⠀⠀⠀

\begin{gathered}\twoheadrightarrow\sf{\;\dfrac{1}{2}\times 48\times 14}\\\\\\\twoheadrightarrow\sf{\;(48\times 7)\;cm^2}\\\\\\\twoheadrightarrow\;\underline{\boxed{\frak{\pmb{\purple{336\;cm^2}}}}}\;\bigstar\end{gathered}

\therefore\;{\underline{\sf{Hence,\;the\;area\;of\;the\;triangle\;is\;\bf{336\;cm^2}.}}}⠀⠀⠀

Attachments:
Answered by Anonymous
401

Given : The base of a right-angled traingle measures 48cm & its hypotenuse measures 50cm.

To Find : Find the area of the traingle ?

_________________________

Solution : Let the area of the triangle be x.

~

\underline{\frak{As~ we ~know ~that~:}}

  • \underset{\blue{\bf Pythagoras\ Theorem}}{\underbrace{\boxed{\sf{\pink{(Hypotenuse)^2~=~(Perpendicular)^2~+~(Base)^2}}}}}

~

\pmb{\sf{\underline{According ~to~ the~ Given~ Question~:}}}

~

\qquad{\sf:\implies{(50)^2~=~(48)^2~+~(H)^2}}

\qquad{\sf:\implies{2500~=~2304~+~H^2}}

\qquad{\sf:\implies{196~=~H^2}}

\qquad{\sf:\implies{H~=~\sqrt{196}}}

\qquad:\implies{\underline{\boxed{\frak{\purple{\pmb{H~=~14~cm}}}}}}

~

Therefore,

  • Height of triangle is 14cm.

~

________________________

FINDING AREA :

  • \boxed{\sf\pink{Area_{\triangle}~=~\dfrac{1}{2}~×~Base~×~Height}}

~

\pmb{\sf{\underline{Substituting~ the ~Given ~Values~:}}}

~

\qquad{\sf:\implies{Area_{\triangle}~=~\dfrac{1}{\cancel{2}}~×~14~×~\cancel{48}}}

\qquad{\sf:\implies{Area_{\triangle}~=~14~×~24}}

\qquad:\implies{\underline{\boxed{\frak{\pink{\pmb{Area_{\triangle}~=~336~cm^2}}}}}}

~

Hence,

\therefore\underline{\sf{The ~area ~of~ the~\triangle~ is~\bf{\underline{\pmb{336~cm^2}}}}}

Attachments:
Similar questions