Math, asked by ashishkushwaha47, 1 month ago

the base of a right angled triangle is 5 cm and hypothenuse is 13 cm . find its area​

Answers

Answered by Anonymous
34

Answer:

Given :-

  • The base of a right angled triangle is 5 cm and hypotenuse is 13 cm.

To Find :-

  • What is the area of a right angled triangle.

Formula Used :-

\clubsuit Area Formula :

\mapsto \sf\boxed{\bold{\pink{Area_{(Triangle)} =\: \dfrac{1}{2} \times Base \times Height}}}

Solution :-

First, we have to find the height (AB) :

Given :

  • Base (BC) = 5 cm
  • Hypotenuse (AC) = 13 cm

According to the Pythagoras Theorem Formula we have to find the value of AB :

\leadsto \bf{(AB)^2 =\: (AC)^2 - (BC)^2}

\leadsto \sf (AB)^2 =\: (13)^2 - (5)^2

\leadsto \sf (AB)^2 =\: (13 \times 13) - (5 \times 5)

\leadsto \sf (AB)^2 =\: 169 - 25

\leadsto \sf (AB)^2 =\: 144

\leadsto \sf AB =\: \sqrt{144}

\leadsto \sf\bold{\purple{AB =\: 12}}

Now, we have to find the area of a right angled triangle :

Given :

  • Base (BC) = 5 cm
  • Height (AB) = 12 cm

According to the question by using the formula we get,

\longrightarrow \sf Area_{(Triangle)} =\: \dfrac{1}{2} \times 5 \times 12

\longrightarrow \sf Area_{(Triangle)} =\: \dfrac{1}{\cancel{2}} \times {\cancel{60}}

\longrightarrow \sf\bold{\red{Area_{(Triangle)} =\: 30\: cm^2}}

{\small{\bold{\underline{\therefore\: The\: area\: of\: a\: right\: angled\: triangle\: is\: 30\: cm^2\: .}}}}

Attachments:
Answered by CelestialCentrix
79

Answer:

 \bold{30cm {}^{2} }

Step-by-step explanation:

  \large \qquad\dag \frak{Given:}

 \sf \: Base(YZ)=5  \:  \: cm

 \sf \: Hypotenuse  \: (XZ)=13 cm

 \sf \: Let's  \: find  \: the \:  length  \: of  \: XY  \: first

 \:

 \large \qquad\dag \frak{Solution}

 \sf \: By \:  Pythagoras  \: Theorem

\sf(The\:   length \:  of \:  hypotenuse \:  is \:  equal \:  to \:  the\:   Sum \:  of \:  other \:  2 \:  sides)

\tt \qquad \:  →XY {}^{2} +YZ {}^{2} =XZ {}^{2}

\tt \qquad \:  →XY {}^{2}   =XZ {}^{2}  - YZ {}^{2}

\tt \qquad \:  →XY {}^{2}  = 169 - 25

\tt \qquad \:  →XY {}^{2}  =  \sqrt{144} cm

\tt \qquad \:  →XY {}^{2}  = 12 \: cm

 \:

 \sf \: Now, As  \: we  \: know \:  that

 \bold \red{Area \:  of  \: triangle} \bold{=  \frac{1}{2}  \times Base  \times height}

\sf {Area \:  of  \: triangle} =  \frac{1}{2}  \times 5 \times 12

 \bold{Area \:  of  \: triangle} =  \bold \red{30 {cm}^{2} }

 \:

 \bold \red{Celestial} \bold{Centrix}

Attachments:
Similar questions