Math, asked by vivekvipperla, 8 months ago

the base of a triangle is 4 CM longer than it's altitude if the area of the triangle is 48 s. q cm then find it's base and altitude​

Answers

Answered by TheProphet
4

Solution :

Let the altitude of a triangle be r cm & the base of a triangle be (r + 4) cm;

We know that formula of the area of triangle :

\boxed{\bf{\frac{1}{2} \times base\times height}}}}

A/q

\longrightarrow\sf{48=\dfrac{1}{2} \times (r+4)(r)}\\\\\longrightarrow\sf{48\times 2=r^{2} + 4r}\\\\\longrightarrow\sf{96=r^{2} + 4r}\\\\\longrightarrow\sf{r^{2} +4r-96=0}\\\\\longrightarrow\sf{r^{2} +12r-8r-96=0}\\\\\longrightarrow\sf{r(r+12) -8(r+12)=0}\\\\\longrightarrow\sf{(r+12)(r-8)=0}\\\\\longrightarrow\sf{r+12=0\:\:\:Or\:\:\:r-8=0}\\\\\longrightarrow\bf{r\neq -12\:cm\:\:Or\:\:r=8\:cm}

As we know that negative value isn't acceptable .

Thus;

\star\:\:\underline{\sf{Altitude\:of\:triangle=r=\bf{8\:cm}}}}\\\\\star\:\underline{\sf{Base\:of\:triangle=(r+4)=(8+4)=\bf{12\:cm}}}}

Answered by InfiniteSoul
42

\sf{\underline{\boxed{\blue{\large{\bold{ Question}}}}}}

  • the base of a triangle is 4 CM longer than it's altitude if the area of the triangle is 48 s. q cm then find it's base and altitude

\sf{\underline{\boxed{\blue{\large{\bold{ Solution}}}}}}

{\bold{\underline{\boxed{\orange{ Given }}}}}

  • base is 4 cm greater than altitude
  • area = 48sq.cm

{\bold{\underline{\boxed{\orange{ To\: Find }}}}}

  • base
  • altitude

{\bold{\underline{\boxed{\orange{ explanation }}}}}

let altitude = x

  • base is 4 greater than altitude

base = x + 4

  • Formulae used

\sf{\underline{\boxed{\green{\large{\bold{ area = \dfrac{1}{2} \times base \times height}}}}}}

  • putting values

\sf\implies 48 = \dfrac{1}{2} \times x \times x + 4

\sf\implies 48\times 2 = x^2 + 4x

\sf\implies 96 = x^2 + 4x

\sf\implies x^2 + 4x - 96 = 0

\sf\implies x^2 + 12x - 8x - 96 = 0

\sf\implies x (x + 12 ) - 8 ( x + 12 ) = 0

\sf\implies ( x - 8 ) ( x + 12 ) = 0

________________________

\sf\longrightarrow x - 8 = 0

\sf\longrightarrow x = 8

___________________

\sf\longrightarrow x + 12 = 0

\sf\longrightarrow x  = - 12

___________________________

  • since side cannot be negative

Therefore

  • x = 8

\sf{\underline{\boxed{\green{\large{\bold{ altitude = 8 cm}}}}}}

\sf\longrightarrow base = x + 4

\sf\longrightarrow base = 8 + 4

\sf\longrightarrow base = 12

\sf{\underline{\boxed{\green{\large{\bold{ base = 12 cm }}}}}}

Similar questions