Math, asked by ArY0N2310, 4 months ago

The base of a triangular field is three times its height. If the cost of cultivating the field at 2800 per hectare is 37800, find its base and height.

Answers

Answered by Anonymous
29

♣ɢɪᴠᴇɴ:–

  • Total cost of cultivating the field = 37800
  • Rate of cultivating the field = 2800/hectare

ᴛᴏ ғɪɴᴅ:

  • The base and height of the triangular field = ?

sᴏʟᴜᴛɪᴏɴ:

\qquad \quad \bull  \:First let us find the area of the triangular field:–

Area of the field:

\qquad \quad \bull   \quad \sf{ \bigg \lgroup \dfrac{total \: cost}{rate \: per \: hectare}  \bigg \rgroup}

 \qquad \quad :  \longrightarrow \tt{  \bigg \lgroup\dfrac{37800}{2800} \bigg \rgroup{hectares}}

 \qquad \quad :  \longrightarrow \tt{  \bigg \lgroup\dfrac{27}{2} \bigg \rgroup{hectares}}

\qquad \quad :  \longrightarrow \tt{  \bigg \lgroup\dfrac{27}{2}  \times 10000\bigg \rgroup{ {m}^{2} }}\\

\qquad \quad :  \leadsto \tt   {\underline{\boxed {\tt { 135000 { {m}^{2} }}}}}\\

Let the height of the field = (x) m

Then it's base = (3x) m

\qquad \quad \therefore   \quad \sf{   \dfrac{1}{2}  \times 3x \times x  =  135000}\\

\qquad \quad :  \longrightarrow \tt{ \dfrac{3 {x}^{2} }{2} = 135000   }

\qquad \quad :  \longrightarrow \tt{ {x}^{2} =  \bigg \lgroup135000 \times  \dfrac{2}{3}   \bigg \rgroup  }\\

\qquad \quad :  \longrightarrow \tt{ {x}^{2} =  90000  }\\

\qquad \quad :  \longrightarrow \tt{ {x}=   \sqrt{90000}   } \\

 \qquad \quad :  \longrightarrow \underline{\boxed{\tt{ {x}=   300   } }}\\

 \large \therefore \sf{Height \: of  \: the ~field =( x) m =   {\underline{\underline{300 \:  m}}}} \\

 \large \therefore \sf{Base \: of  \: the ~field =( 3x) m = (3 \times 300) \: m  =   {\underline{\underline{900 \:  m}}}} \\

♣ɴᴏᴛᴇ:–

  • If you have any problem during seeing the answer then either swipe right for seeing the whole content or view this answer from the website (brainly.in).
Similar questions