Math, asked by NehaSharma077, 6 months ago

The base of a triangular field is three times its height. If the cost of cultivating the field at 2800 per hectare is 37800, find its base and height.

Answers

Answered by Anonymous
27

ɢɪᴠᴇɴ:–

  • Total cost of cultivating the field = ₹37800
  • Rate of cultivating the field = ₹2800/hectare

ᴛᴏ ғɪɴᴅ:–

  • The base and height of the triangular field = ?

sᴏʟᴜᴛɪᴏɴ:–

\qquad \quad \bull  \:First let us find the area of the triangular field:–

Area of the field:–

\qquad \quad \bull   \quad \sf{ \bigg \lgroup \dfrac{total \: cost}{rate \: per \: hectare}  \bigg \rgroup}

\qquad \quad :  \longrightarrow \tt{  \bigg \lgroup\dfrac{37800}{2800} \bigg \rgroup{hectares}}

\qquad \quad :  \longrightarrow \tt{  \bigg \lgroup\dfrac{27}{2} \bigg \rgroup{hectares}}

\qquad \quad :  \longrightarrow \tt{  \bigg \lgroup\dfrac{27}{2}  \times 10000\bigg \rgroup{ {m}^{2} }}\\

\qquad \quad :  \leadsto \tt   {\underline{\boxed {\tt { 135000 { {m}^{2} }}}}}\\

Let the height of the field = (x) m

Then it's base = (3x) m

\qquad \quad \therefore   \quad \sf{   \dfrac{1}{2}  \times 3x \times x  =  135000}\\

\qquad \quad :  \longrightarrow \tt{ \dfrac{3 {x}^{2} }{2} = 135000   }

\qquad \quad :  \longrightarrow \tt{ {x}^{2} =  \bigg \lgroup135000 \times  \dfrac{2}{3}   \bigg \rgroup  }\\

\qquad \quad :  \longrightarrow \tt{ {x}^{2} =  90000  }\\

\qquad \quad :  \longrightarrow \tt{ {x}=   \sqrt{90000}   } \\

\qquad \quad :  \longrightarrow \underline{\boxed{\tt{ {x}=   300   } }}\\

\large \therefore \sf{Height \: of  \: the ~field =( x) m =   {\underline{\underline{300 \:  m}}}} l\\

\large \therefore \sf{Base \: of  \: the ~field =( 3x) m = (3 \times 300) \: m  =   {\underline{\underline{900 \:  m}}}}\\

ɴᴏᴛᴇ:–

  • If you have any problem during seeing the answer then either swipe right for seeing the whole content or view this answer from the website (brainly.in).

Similar questions