Math, asked by sewlide87, 7 months ago

The base of an isoceles triangle is 24 cm and its area is 60 sq. cm. Find its perimeter using Heron's formula.​

Answers

Answered by VaibhavTheAryabhatta
2

Answer:

height

 \bf height =  \frac{area}{base} =  \frac{60}{24}  cm \\  \\  \sf \: perimeter =  \frac{1}{2} \times base \times height \\  \\   \sf \implies \frac{1}{2} \times 24 \times  \frac{60}{24} = 30cm

Answered by AbinayaIX
5

Step-by-step explanation:

let \: the \: equal \: sides \: be \: x \: metres

semiperimeter =  \frac{24 + x + x}{2}

 =  \frac{12 + a}{2}

area \: of \: triangle \:  =  \sqrt{s(s - a)(s - b)(s - c)}

60 =  \sqrt{(x + 12)(x + 12 - x)  (  x + 12 - x)(x + 12  -  24)}

6 0  = \sqrt{(x + 12)(12)(12)(x - 12)}

 \sqrt{( {x}^{2}  -  {12}^{2} )(144)}  = 60

 \sqrt{ {x}^{2} - 144 (144)} =6 0

 {x}^{2}  - 144(144) =  {60}^{2}

 {x}^{2}  + 144 =  \frac{3600}{144}

 {x}^{2}  + 144 = 25

 {x }^{2}  = 25 + 144 \\  = 169 \:  \:  \:  \:  \:   \\ x =  \sqrt{169 }  = 13

so \\ perimter \:  = 24 + 13 +1 3 = 50cm

hope it's helpful

Similar questions