the base of an isosceles triangle measure 80 cm and its area is 360 CM square find the perimeter of the triangle
Answers
Answer : 162 cm
Explanation:
Let us assume the equal sides to be x.
Given that base=80 cm.
=> Height of the isosceles triangle=\sqrt{x^{2}-40^{2}}x2−402 (using pythagoras theorem)
So, area=\frac{1}{2}bh21bh
360= \frac{1}{2}*80* < span > \sqrt{x^{2}-40^{2}} 21∗80∗<span>x2−402
9=\sqrt{x^{2}-40^{2}}x2−402
81={x^{2}-40^{2}}x2−402
x^{2}=1681
x=41cm
=> Perimeter=41+41+80=162cm.
Cheers!
Answer :
- The Perimeter of the isosceles triangle , p = 161 cm
Explanation :
Given :
- Base of the isosceles triangle, S = 80 cm
- Area of the isosceles triangle, A = 360 cm²
To find :
- Perimeter of the isosceles triangle , P = ?
Solution :
First let us find the equal side of the isosceles triangle.
We know the formula for area of a isosceles triangle i.e,
⠀⠀⠀⠀⠀⠀⠀⠀⠀A = b/4√(4a² - b)
Where :
- A = Area of the isosceles triangle
- a = Equal side of the triangle
- b = Base of the triangle
Now by using the formula for area of a isosceles triangle and substituting the values in it, we get :
==> A = b/4√(4a² - b²)
==> 360 = 80/4 × √(4a² - 80²)
==> 360 = 20 × √(4a² - 6400)
==> 360/20 = √(4a² - 6400)
==> 18 = √(4a² - 6400)
==> 18² = 4a² - 6400
==> 324 = 4a² - 6400
==> 324 + 6400 = 4a²
==> 6724 = 4a²
==> 6724/4 = a²
==> 1681 = a²
==> √1681 = a
==> 41 = a
∴ a = 41 cm
Hence the equal side of the isosceles triangle is 41 cm .
Now to find the perimeter of the triangle :
We know the formula for perimeter of a triangle i.e,
⠀⠀⠀⠀⠀⠀⠀⠀⠀Perimeter = Sum of all sides
Now using the above formula and substituting the values in it, we get :
==> P = sum of all sides
==> P = 41 + 41 + 80 [Since the two equal sides are there , a = 41 ]
==> P = 162
∴ P = 162 cm
Therefore,
- Perimeter of the triangle is 162 cm.