Math, asked by sfamida05, 5 months ago

the base of the first triangle is equal to the base of the second triangle if their respective height are 10 cm and 14 cm findout ratio of the area​

Answers

Answered by itzcutiemisty
6

Answer:

5 : 7

Step-by-step explanation:

Given :

  • \sf{Base_1\:=\:Base_2}
  • \sf{h_1\:=\:10\:cm}
  • \sf{h_2\:=\:14\:cm}

To find :

  • \sf{\dfrac{Area_1}{Area_2}} = ?

Solution :

We know, area of a triangle = \sf{\dfrac{1}{2}bh}

Where, b = base of triangle

\:\:\:\:\:\:\:\:\:\: h = height of triangle

\implies\sf{\dfrac{A_1}{A_2}\:=\:\dfrac{\:\cancel{½}\:\times\:b_1\:\times\:h_1}{\:\cancel{½}\:\times\:b_2\:\times\:h_2}}

[ \because\:\sf{b_1\:=\:b_2,\:they\:will\:cancel\:out,\:½\:will\:also\:cancel\:out\:and\:put\:values\:of\:h_1\:and\:h_2 } ]

\implies\:\sf{\dfrac{A_1}{A_2}\:=\:\dfrac{\cancel{b_1}\:\times\:10}{\cancel{b_2}\:\times\:14}}

\implies\:\sf{\dfrac{A_1}{A_2}\:=\:\dfrac{10}{14}}

\implies\:\sf{\dfrac{A_1}{A_2}\:=\:\dfrac{5}{7}}

\therefore Ratio of their areas is 5 : 7.

Similar questions