Math, asked by anishrock, 1 year ago

the base of the parallelogram is twice its height the area of a parallelogram is 512 CM square find the base and height

Answers

Answered by thameshwarp9oqwi
14

Answer:

GIVEN , TWICE BASE OF ||gm = HEIGHT OF ||gm

==> 2 BASE = HEIGHT

AREA OF PARALLELOGRAM = 512 CM²

 512 = BASE × HEIGHT

 512 = B × 2 B (∴ 2 BASE = HEIGHT )

512 =  2 B²

512/2 = B²

=> 256 = B²

==> √256 = B

==>  16 = BASE

HEIGHT ==> 16×2 ==> 32

Answered by ƦαíηвσωStαƦ
22

{\mathbf {\blue{S}{\underline{\underline{olution:-}}}}}

\mathfrak{\underline{AnswEr:-}}

  • The base of the parallelogram = 16 cm
  • The height of the parallelogram = 32 cm

\mathfrak{\underline{Given:-}}

  • The base of the parallelogram is twice its height.
  • The area of a parallelogram is 512 cm².

\mathfrak{\underline{Need\:To\: Find:-}}

  • The base of the parallelogram = ?
  • The height of the parallelogram = ?

{\mathbf {\blue{E}{\underline{\underline{xplanation:-}}}}}

Let the height of parallelogram be x cm.

Then, the base of parallelogram will be 2x cm.

\:\:\:\:\dag\bf{\underline \green{Formula\:used\:here:-}}

\bigstar{\underline{\boxed{\sf\purple{Area \:of \:parallelogram = Base \times Height}}}} \\\\

\:\:\:\:\dag\bf{\underline \blue{Putting\:the\:values:-}}

\longrightarrow \sf {512\:cm^2 = x \times 2x} \\\\

\longrightarrow\sf {x^2 = \cancel\dfrac{512}{2} } \\\\

\longrightarrow \sf {x^2 = 256\:cm^2} \\\\

\longrightarrow\large\boxed{\sf{\purple{x = 16\:cm^2}}} \\\\

\:\:\:\:\dag\bf{\underline{\underline \pink{Hence:-}}}

  • The base of the parallelogram = 16 cm

  • The height of the parallelogram = 2 × 16 = 32 cm

\rule{200}{2}

Similar questions