Math, asked by geetanjalidahale0104, 7 months ago

the base raddii of two circular cones of same height are in the ratio 3 is to 5.find ratio of their volumes​

Answers

Answered by ExElegant
3

\huge{\mathbb{\red{ANSWER:-}}}

Given :-

\sf{For \: two \: circular \: cones-}

\sf{base \: radius \: is \: same.}

\sf{r1 = r2 = r}

\sf{Ratio \: of \: their \: heights-}

\sf{\dfrac{h1}{h2} =\dfrac{3}{5}}

To Find :-

\sf{Ratio \: of \: volumes \: of \: these \: 2 \: circular \: cones-}

\sf{\dfrac{V1}{V2} = ?}

Using Formulas :-

\sf{Volume \: of \: Circular \: Cone =\dfrac{1}{3} \pi r^{2} h}

Solution :-

\sf{For \: first \: Circular \: cone-}

\sf{height = h1 = 3}

\sf{Volume = V1 =\dfrac{1}{3} \pi r^{2} h1}

\sf{For \: second \: Circular \: cone-}

\sf{height = h2 = 5}

\sf{Volume = V2 =\dfrac{1}{3} \pi r^{2} h2}

\sf{Now \: ,}

\sf{V1 =\dfrac{1}{3} \pi r^{2}\times 3}

\sf{V1 = \pi r^{2}} ---(1)

\sf{V2 =\dfrac{1}{3} \pi r^{2}\times 5}

\sf{V2 =\dfrac{5}{3} \pi r^{2}}

\sf{From \: equation \: (1)-}

\sf{V2 =\dfrac{5}{3}\times V1}

\sf{\dfrac{V2}{V1}=\dfrac{5}{3}}

\sf{\dfrac{V1}{V2}=\dfrac{3}{5}}

Result :-

\sf{Ratio \: of \: the \: volumes \: of \: these \: 2 \: Circular}

\sf{cones \: is \: same \: as \: the \: ratio \: of \: their}

\sf{heights.}

Extra Formulas :-

1)\sf{Total \: Surface \: Area =\pi r(r + h)}

2)\sf{Curved \: Surface \: Area =\pi r l}

3)\sf{Slant \: height(l) =\sqrt{r^{2} + h^{2}}}

Answered by sharonmarysabu41492
5

3: 5

hope it helps you....

Similar questions