Math, asked by anujverma11834, 4 months ago

The base radius and height of a right circular cylinder are 5 cm and 10 cm respectively. It's curved surface area is ​

Answers

Answered by saikiabhaswati355
0

Answer:

This is the correct answer

Step-by-step explanation:

Please mark me the brainliest

Attachments:
Answered by thebrainlykapil
32

Question :-

  • The base radius and height of a right circular cylinder are 5 cm and 10 cm respectively. It's curved surface area is .

 \\  \\

Given :-

  • Base of the Cylinder = 5cm
  • Height of the Cylinder = 10cm

 \\  \\

To Find :-

  • Curved Surface Area of Cyclinder.

 \\  \\

Diagram :-

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\thicklines\multiput(-0.5,-1)(26,0){2}{\line(0,1){40}}\multiput(12.5,-1)(0,3.2){13}{\line(0,1){1.6}}\multiput(12.5,-1)(0,40){2}{\multiput(0,0)(2,0){7}{\line(1,0){1}}}\multiput(0,0)(0,40){2}{\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\multiput(18,2)(0,32){2}{\sf{5cm}}\put(9,17.5){\sf{10cm}}\end{picture}

 \\  \\

Solution :-

Curved Surface Area of Cyclinder

 {:} \longrightarrow \sf{\sf{Curved\: Surface \:Area\: of\: Cyclinder\: = \: 2 \pi \: r \:h  }}\\

 {:} \longrightarrow \sf{\sf{Curved\: Surface \:Area\: of\: Cyclinder\: = \: 2  \times  \dfrac{22}{7}  \: \times  \:  5\: \times  \: 10  }}\\

 {:} \longrightarrow \sf{\sf{Curved\: Surface \:Area\: of\: Cyclinder\: = \: \ \dfrac{44 \:  \times  \: 50}{7}  \:  }}\\

 {:} \longrightarrow \sf{\sf{Curved\: Surface \:Area\: of\: Cyclinder\: = \: \ \dfrac{2200}{7}  \:  }}\\

 {:} \longrightarrow \sf{\bf{Curved\: Surface \:Area\: of\: Cyclinder\: = \: \ 314.28\: cm^{2}  \:  }}\\

━━━━━━━━━━━

So , C.S.A of Cyclinder is 314.28cm²

━━━━━━━━━━━

Additional Info :

  • T.S.A of cylinder = 2πrh + 2πr²
  • C.S.A of cone = πrl
  • T.S.A of cone = πrl + πr²
  • C.S.A of cuboid = 2(l + b)h
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cube = 4a²
  • T.S.A of cube = 6a²
  • C.S.A of hemisphere = 2πr²
  • T.S.A of hemisphere = 3πr²

━━━━━━━━━━━

Similar questions