Math, asked by hk598273, 3 days ago

The base radius of a cone is 15 cm and its slant height is 25 cm find the volume

Answers

Answered by Anonymous
15

Explanation:-

We have :-

✧ Base radius of cone (r) = 15cm

✧ Slant height (l) = 25 cm

Required to find :-

Volume of cone

SoLuTiOn :-

  \:  \:  \:  \bullet \boxed{ \underline{ \pmb{volume \: of \: cone =  \frac{1}{3}  \pi \: r {}^{2}h }}}

where,

r = radius of cone

h = height of cone.

But we don't know the height of cone. So, By using relation between radius, height, slant height of cone

We can find the height of cone.

 \:  \:  \bullet \:  \boxed{ \underline{ \pmb{l =  \sqrt{r {}^{2}  + h {}^{2} } }}}

where,

l = slant height

r = radius

h = height

 \implies \:  \sf \: 25=  \sqrt{(15) {}^{2} + h {}^{2}  }

 \:  \:  \:  \:  \:  \:  \:  \implies \:  \sf \: (25) {}^{2}  = (15) {}^{2}  + h {}^{2}

 \:  \:  \:  \:  \:  \:  \:  \implies \:  \sf \: 625  = 225  + h {}^{2}

 \:  \:  \:  \:  \:  \:  \:  \implies \:  \sf \: 625   - 225   = h {}^{2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \implies \:  \sf \: 400 = h {}^{2}

 \:  \:  \:  \:  \:  \implies \:  \sf \: (20) {}^{2}  = h {}^{2}

 \boxed{ \bf \: h = 20cm}

Now, finding the volume of cone,

Substituting the values in formula.

 \implies \:  \sf \: v =  \dfrac{1}{3}  \times  \pi \:  \times (15) {}^{2}  \times 20

 \implies  \sf \: v =  \dfrac{1}{3}  \times   \dfrac{22}{7} \:  \times (15) {}^{2}  \times 20

\implies \sf \: v =    \   \dfrac{22}{7} \:  \times 75  \times 20

\implies \sf \: v  = \dfrac{33000}{7}

 \bf \:  \underline{v =4714.28cm {}^{3}  }

So, volume of the cone is 4714.28 cm³

Similar questions