The base (unequal side ) of an isosceles triangle is 4cm and perimeter is 20cm. find its area
Answers
Answer:
Let the sides of the triangle be a, a and b.
b = 4cm
perimeter = 20cm
⇒ a + a + b = 20cm
⇒ 2a + 4 = 20
⇒ 2a = 20 - 4 = 16cm
⇒ a = 16/2 = 8cm
s = perimeter/2 = 20/2 = 10cm
\begin{gathered}Area = \sqrt{s(s-a)(s-b)(s-c)}\\ \\ A = \sqrt{10(10-8)(10-8)(10-4)}\\ \\ A = \sqrt{10 \times 2 \times 2 \times 6}= \sqrt{2 \times 5 \times 2 \times 2 \times 2 \times 3}\\ \\ A = 4 \sqrt{15}\ \ cm^2\end{gathered}
Area=
s(s−a)(s−b)(s−c)
A=
10(10−8)(10−8)(10−4)
A=
10×2×2×6
=
2×5×2×2×2×3
A=4
15
cm
2
Area is 4√15 cm².
Answer:
Let the sides of the triangle be a, a and b.
b = 4cm
perimeter = 20cm
⇒ a + a + b = 20cm
⇒ 2a + 4 = 20
⇒ 2a = 20 - 4 = 16cm
⇒ a = 16/2 = 8cm
s = perimeter/2 = 20/2 = 10cm
\begin{lgathered}Area = \sqrt{s(s-a)(s-b)(s-c)}\\ \\ A = \sqrt{10(10-8)(10-8)(10-4)}\\ \\ A = \sqrt{10 \times 2 \times 2 \times 6}= \sqrt{2 \times 5 \times 2 \times 2 \times 2 \times 3}\\ \\ A = 4 \sqrt{15}\ \ cm^2\end{lgathered}
Area=
s(s−a)(s−b)(s−c)
A=
10(10−8)(10−8)(10−4)
A=
10×2×2×6
=
2×5×2×2×2×3
A=4
15
cm
2
Area is 4√15 cm².
Step-by-step explanation:
mark me as a brainlist