The big prize for doing these questions
Example of gravity as an unbalanced force
Technologies that reduce the impact of forces on a body in a car
Definition of each
Magnetic force
Magnetic poles
Magnetic fields
Electromagnets
Mass and weight
What's the difference?
Answers
Answered by
1
magnetic force on a moving charge:

The implications of this expression include:
1. The force is perpendicular to both the velocity v of the charge q and the magnetic field B.
2. The magnitude of the force is F = qvB sinθ where θ is the angle < 180 degrees between the velocity and the magnetic field. This implies that the magnetic force on a stationary charge or a charge moving parallel to the magnetic field is zero.
3. The direction of the force is given by the right hand rule. The force relationship above is in the form of a vector product.

When the magnetic force relationship is applied to a current-carrying wire, the right-hand rule may be used to determine the direction of force on the wire.
From the force relationship above it can be deduced that the units of magnetic field are Newton seconds /(Coulomb meter) or Newtons per Ampere meter. This unit is named the Tesla. It is a large unit, and the smaller unit Gauss is used for small fields like the Earth's magnetic field. A Tesla is 10,000 Gauss. The Earth's magnetic field at the surface is on the order of half a Gauss.
There are different ways of defining magnetic poles.
The most common understanding is that they are the positions on the Earth's surface where the geomagnetic field is vertical. These poles are called dip poles, and the north and south dip poles do not have to be (and are not now) antipodal. In principle the dip poles can be found by experiment, conducting a magnetic survey to determine where the field is vertical.
Another definition comes from global models of the geomagnetic field. Models of this type, such as the International Geomagnetic Reference Field (IGRF) include an equivalent (but fictional) magnetic dipole at the centre of the Earth in their representation of the field. This dipole defines an axis that intersects the Earth's surface at two antipodal points. These points are called geomagnetic poles. The axis of the equivalent dipole is currently inclined at about 10° to the Earth's rotation axis. The IGRF can also be used to compute dip pole positions. These model dip poles do not agree with the measured dip pole positions. The geomagnetic poles and model dip poles cannot be located by direct local measurement.

The implications of this expression include:
1. The force is perpendicular to both the velocity v of the charge q and the magnetic field B.
2. The magnitude of the force is F = qvB sinθ where θ is the angle < 180 degrees between the velocity and the magnetic field. This implies that the magnetic force on a stationary charge or a charge moving parallel to the magnetic field is zero.
3. The direction of the force is given by the right hand rule. The force relationship above is in the form of a vector product.

When the magnetic force relationship is applied to a current-carrying wire, the right-hand rule may be used to determine the direction of force on the wire.
From the force relationship above it can be deduced that the units of magnetic field are Newton seconds /(Coulomb meter) or Newtons per Ampere meter. This unit is named the Tesla. It is a large unit, and the smaller unit Gauss is used for small fields like the Earth's magnetic field. A Tesla is 10,000 Gauss. The Earth's magnetic field at the surface is on the order of half a Gauss.
There are different ways of defining magnetic poles.
The most common understanding is that they are the positions on the Earth's surface where the geomagnetic field is vertical. These poles are called dip poles, and the north and south dip poles do not have to be (and are not now) antipodal. In principle the dip poles can be found by experiment, conducting a magnetic survey to determine where the field is vertical.
Another definition comes from global models of the geomagnetic field. Models of this type, such as the International Geomagnetic Reference Field (IGRF) include an equivalent (but fictional) magnetic dipole at the centre of the Earth in their representation of the field. This dipole defines an axis that intersects the Earth's surface at two antipodal points. These points are called geomagnetic poles. The axis of the equivalent dipole is currently inclined at about 10° to the Earth's rotation axis. The IGRF can also be used to compute dip pole positions. These model dip poles do not agree with the measured dip pole positions. The geomagnetic poles and model dip poles cannot be located by direct local measurement.
Similar questions