Math, asked by aksharahire448, 3 months ago

The binary operation * defind on set R, given by a * b = a + b / 2 for all a,b E R is……​

Answers

Answered by unknown7033
1

Answer:

A binary operation * is defined on the set R of all real numbers by the rule a⋅b=√a2+b2 for all a, b∈R

Answered by TrueRider
75

A binary operation * is defined on the set R of all real numbers by the rule a⋅b=√a2+b2 for all a, b∈R.

A binary operation * is defined on the set

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: R

of all real numbers by the rule

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a \: . \: b  = \sqrt{ {a}^{2} +  { {b}^{2} }   \: }

for all

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a, b∈R

Write the identity element for * on

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ R

Similar questions