The bisectors of exterior angles at B and C of ∆ ABC meet at O. If ∠ A = 80°, then ∠ BOC =
Answers
Answered by
0
Answer:
△ABC,
∠ABC+∠ACB+∠BAC=180
∠ABC+70+50=180
∠ABC=60
∘
∠OCB=
2
1
(180−∠ACB)
∠OCB=
2
1
(180−50)
∠OCB=65
∘
∠OBC=
2
1
(180−∠ABC)
∠OBC=
2
1
(180−60)
∠OBC=60
∘
In △OBC,
∠OCB+∠OBC+∠BOC=180
65+60+∠BOC=180
∠BOC=180−125
∴∠BOC=55
∘
Similar questions