Math, asked by lizahprajapati2018, 2 months ago

the breath of a cuboid is two-third of its length and height is one third of its length. If the volume of cuboid is 3072cm. find the base area of the cuboid

Answers

Answered by VεnusVεronίcα
37

Given : The breadth of a cuboid is \rm \dfrac{2}{3} of its length and height is \rm \dfrac{1}{3} of its length. The volume of the given cuboid is \rm 3072cm^3.

To find : The base area of the cuboid.

 \\

\qquad______________

 \\

Let the length of the cuboid be \rm x cm.

So, according to the question :

\:

Breadth of the cuboid = \rm \dfrac{2}{3} of Length

 \rm\qquad \dashrightarrow \: b =  \dfrac{2x}{3}  \: cm

 \:

Height of the cuboid = \rm \dfrac{1}{3} of Length

 \rm \qquad \dashrightarrow \: h =  \dfrac{1x}{3}  \: cm

 \:

Here, we know the formula :

\bf Volume_{(cuboid)}=Length ~(Breadth)~(Height)

 \:

Substituting the values in the formula to find the value of \rm x:

 \:

 \rm \qquad \dashrightarrow \: x \bigg \lgroup \dfrac{2x}{3}  \bigg \rgroup \bigg \lgroup  \dfrac{1x}{3}  \bigg \rgroup = 3072 \:  {cm}^{3}

 \:

 \rm \qquad \dashrightarrow \:   \bigg \lgroup\dfrac{2 {x}^{3} }{9}  \bigg \rgroup = 3072 \:  {cm}^{3}

 \:

 \rm \qquad \dashrightarrow \: 2 {x}^{ 3}  =(9) \: ( 3072  \: {cm}^{3})  \:

 \:

 \rm \qquad \dashrightarrow \: 2 {x}^{3}  = 27648 \:cm ^{3}

 \:

 \rm \qquad \dashrightarrow \:  {x}^{ 3}  =   \cancel\dfrac{27648 \: cm ^{3} }{2}

 \:

 \rm \qquad \dashrightarrow \:x =   \sqrt[3]{13824 \: cm ^{3}  }

 \:

 \bf \qquad \dashrightarrow \: x = 24 \: m

 \\

Substituting the value of \rm x for getting breadth and height :

~

Breadth of the cuboid = \rm \dfrac{2}{3}~(x)

\rm\qquad\dashrightarrow~ 16~cm

~

Height of the cuboid = \rm \dfrac{1}{3}~(x)

\rm \qquad\dashrightarrow~ 8~cm

\\

Finding the base area by substituting the values :

~

\rm \qquad\dashrightarrow~ Area_{(base)}=Length~(Breadth)

\qquad\rm \dashrightarrow~ Area=(24cm)~(16cm)

\bf \qquad\dashrightarrow~ Area=348~cm^2

\\

\rm\therefore{\underline{ The~ base~ area~ of~the~ cuboid~ is~}}\underline{\bf 348~ cm^2.}

Similar questions