Math, asked by Mohitrocks2020, 8 months ago

The breath of rectangle gardern is 2/3 of its length .if the perimeter is 40m , find the diamension.​

Answers

Answered by nitashachadha84
5

  \:  \:  \:  \: \huge \star \:  \:    \:  \:  \:  \: \underline{\red{solution : }} \\  \\ let \: length \: be \:  = x \\  \\  \therefore \: breath =  \frac{2}{3}  \times x \\  \\    \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \boxed{ \pink{perimeter = 40cm}} \\  \\ since \:  \\  \\  \:  \:  \:  \star \: perimeter  = \:  \boxed{   \blue{2(l + b)}} \\  \\  \implies \: 40cm = 2(x +  \frac{2}{3}  \times x) \\  \\  \implies \:  \frac{40cm}{2}  =  \frac{3x + 2x}{3}  \\  \\  \implies \: 20cm =  \frac{5x}{3}  \\  \\  \implies  \:  \frac{20cm \times 3}{5}  = x \\  \\  \therefore \: x = 4cm \times 3 =  \red{ \boxed{ \purple{12cm}}} \\  \\ length = x \\     \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \: = 12m \\  \\  breath =  \frac{2}{3}  \times x \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{2}{3}   \times 12 \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \: = 2 \times 4 \\  \\ breath \:  =  \pink{ \boxed{ \green{8cm}}}

Answered by Anonymous
8

\huge\mathfrak\blue{Answer:}

Given:

  • We have been a rectangle
  • Breadth of rectangle is 2/3 times of its length
  • Perimeter of rectangle = 40 m

To Find:

  • We need to find the dimensions of rectangle

Solution:

Let the Length of rectangle = x

Breadth of rectangle = \sf{\dfrac{2x}{3}}\\

Since we know that

\boxed{\sf{\pink{Perimeter \: of \: Rectangle = 2( Length + Breadth )}}}

________________________________

\bigstar \: \: \underline{\large\mathfrak\orange{According \: to \: the \: Question:}}

\hookrightarrow \sf{ Perimeter = 40 \: m}

\hookrightarrow \sf{ 2(Length + Breadth) = 40 \: m}

\hookrightarrow \sf{2 \left ( x + \dfrac{2x}{3} \right ) = 40 \: m } \\

Taking LCM on LHS

\hookrightarrow \sf{2 \left ( \dfrac{3x + 2x}{3} \right ) = 40 \: m }

\hookrightarrow \sf{2 \times \dfrac{5x}{3} = 40 \: m}

\hookrightarrow \sf{ \dfrac{10x}{3} = 40 m }

Cross Multiplying the terms

\hookrightarrow \sf{ 10x = 40 \times 3 }

\hookrightarrow \sf{10x = 120}

\hookrightarrow \sf{ x = \dfrac{120}{10}}

\hookrightarrow \sf{x = \cancel{\dfrac{120}{10}}}

\hookrightarrow \boxed{\sf{x=12 \: m}}

________________________________

Hence the dimensions of rectangle are

\implies \sf{Length = 12 \: m}

\implies \sf{Breadth = \dfrac{2 \times 12}{3}}

\implies \sf{Breadth = 8 \: m}

\boxed{\large\mathfrak\red{Length \: of \: Rectangle = 12 \: m}}

\boxed{\large\mathfrak\red{Breadth \: of \: Rectangle = 8 \: m}}

_______________________________

\huge\mathfrak\green{Verification:}

1.) Breadth is 2/3 times of length

\implies \sf{\dfrac{2}{3} \times Length}

\implies \sf{\dfrac{2}{3} \times 12}

\implies \sf{8 = Breadth} \\ \\

2.) Perimeter of rectangle is 40m

\implies \sf{Perimeter = 2 (length + breadth)}

\implies \sf{Perimeter = 2( 12 + 8 )}

\implies \sf{Perimeter = 2 \times 20}

\implies \sf{Perimeter = 40 \: m } \\

Hence Verified !

Similar questions