Math, asked by poojabhar267, 8 months ago

The Canonical form of the quadratic
from 3x^2+3y^2+3z^2+2xy+2xz-2yz​

Answers

Answered by rderassa0001
11

Answer:

Reduce 3x2+5y2+3z2-2yz+2zx-2xy to its canonical form through anorthogonal transformationandfind the rank, signature, index and the nature

Step-by-step explanation:

Answered by talasilavijaya
5

Answer:

The canonical form of the given quadratic equation is y_1^{2} +4y_2^{2} +4y_3^{2}.

Step-by-step explanation:

Given the quadratic equation 3x^2+3y^2+3z^2+2xy+2xz-2yz

A quadratic equation in matrix form can be written as X^TAT=0

\mbox{where}~ A=\left[\begin{array}{ccc}3&1&1\\1&3&-1\\1&-1&3\end{array}\right], ~X=\left[\begin{array}{c}x_1&x_2&x_3\end{array}\right] ~\mbox{and} ~X^T=\left[\begin{array}{ccc}x_1&x_2&x_3\end{array}\right]  

The characteristic equation of A can be written as    

\lambda^{3} -D_1\lambda^{2}+D_2\lambda-D_3=0 where

the sum of diagonals, D_1=9

D_{2}=\left|\begin{array}{cc}3&1\\1&3\end{array}\right|  +\left|\begin{array}{cc}3&-1\\-1&3\end{array}\right| +\left|\begin{array}{cc}3&1\\1&3\end{array}\right|

     =8+8+8=24

And the determinant of  |A|=D_3=3(9-1)-1(3+1)+1(-1-3)

24-4-4=16

Substituting the values, the characteristic equation is

\lambda^{3} -9\lambda^{2}+24\lambda-16=0

Solving the equation, the roots are \lambda=1,4,4.

These are called the eigenvalues of the equation.

Now to find the corresponding eigenvectors of each eigenvalue,

let X=\left[\begin{array}{c}x&y&z\end{array}\right] is the eigenvector corresponding to an eigenvalue λ,

satisfies the condition given by (A-\lambda I)X=0

where I is the identity matrix.

For the matrix A we have, the condition can be written as

\left[\begin{array}{ccc}3-\lambda &1&1\\1&3-\lambda&-1\\1&-1&3-\lambda\end{array}\right] \left[\begin{array}{c}x&y&z\end{array}\right] =\left[\begin{array}{c}0&0&0\end{array}\right]

When \lambda =1

\left[\begin{array}{ccc}2 &1&1\\1&2&-1\\1&-1&2\end{array}\right] \left[\begin{array}{c}x&y&z\end{array}\right] =\left[\begin{array}{c}0&0&0\end{array}\right]

\implies 2x+y+z=0~~ \mbox{or}~~x+2y-z=0~~ \mbox{or}~~x-y+2z=0

Solving for x, y ~\mbox{and}~z, we get  \dfrac{x}{-3} = \dfrac{y}{-(-3)} = \dfrac{z}{3}

So X_1=\left(\begin{array}{c}1&-1&-1\end{array}\right) is an eigenvector corresponding to \lambda =1

Similarly when \lambda =4

\left[\begin{array}{ccc}-1 &1&1\\1&-1&-1\\1&-1&-1\end{array}\right] \left[\begin{array}{c}x&y&z\end{array}\right] =\left[\begin{array}{c}0&0&0\end{array}\right]

\implies -x+y+z=0~~ \mbox{or}~~x-y-z=0

Solving for x, y ~\mbox{and}~z, we get x=0, y=1 and z=-1

So, X_2=\left(\begin{array}{c}0&1&-1\end{array}\right) is an eigenvector corresponding to \lambda =4

To find the another vector with same \lambda =4,

Let us take X_3 an orthogonal to X_2, so that X_2X_1^T=0

that gives \dfrac{x}{-2} = \dfrac{y}{-1} = \dfrac{z}{-1}

Hence X_3=\left(\begin{array}{c}2&1&1\end{array}\right) is an another eigenvector corresponding to \lambda =4

Modal matrix N=\left[\begin{array}{ccc}\dfrac{1}{\sqrt{3} } &0&\dfrac{2}{\sqrt{6} }\\\dfrac{-1}{\sqrt{3} }&\dfrac{1}{\sqrt{2} }&\dfrac{1}{\sqrt{6} }\\\dfrac{-1}{\sqrt{3} }&\dfrac{-1}{\sqrt{2} }&\dfrac{1}{\sqrt{6} }\end{array}\right]

N^TAN=\left[\begin{array}{ccc}\dfrac{1}{\sqrt{3} } &\dfrac{-1}{\sqrt{3} }&\dfrac{-1}{\sqrt{3} }\\0&\dfrac{1}{\sqrt{2} }&\dfrac{-1}{\sqrt{2} }\\\dfrac{2}{\sqrt{6} }&\dfrac{1}{\sqrt{6} }&\dfrac{1}{\sqrt{6} }\end{array}\right]\left[\begin{array}{ccc}3&1&1\\1&3&-1\\1&-1&3\end{array}\right]\left[\begin{array}{ccc}\dfrac{1}{\sqrt{3} } &0&\dfrac{2}{\sqrt{6} }\\\dfrac{-1}{\sqrt{3} }&\dfrac{1}{\sqrt{2} }&\dfrac{1}{\sqrt{6} }\\\dfrac{-1}{\sqrt{3} }&\dfrac{-1}{\sqrt{2} }&\dfrac{1}{\sqrt{6} }\end{array}\right]

=\left[\begin{array}{ccc}1&0&0\\0&4&0\\0&0&4\end{array}\right] =D

Set X=NY where Y=\left[\begin{array}{c}y_1&y_2&y_3\end{array}\right]

Then the quadratic form Q=X^TAX

(NY)^TA(NY)

=Y^T(N^TAN)Y

=Y^TDY

=\left[\begin{array}{ccc}y_1&y_2&y_3\end{array}\right]\left[\begin{array}{ccc}1&0&0\\0&4&0\\0&0&4\end{array}\right] \left[\begin{array}{c}y_1&y_2&y_3\end{array}\right]

y_1^{2} +4y_2^{2} +4y_3^{2}

is the canonical form of the given quadratic equation.

Similar questions