Math, asked by BengaliGirl, 8 months ago

The capacity of a closed cylindrical vessel of height 1m is 15.4 litres. How many square metres of metal sheet would be needed to make it ? [Assume π = 22/7]

Answers

Answered by Uriyella
35

Question :–

The capacity of a closed cylindrical vessel of height 1m is 15.4 litres. How many square metres of metal sheet would be needed to make it ? [Assume π =  \sf \frac{22}{7} ]

Given :–

  • h = 1m = 100cm.
  • Capacity = 15.4 litres.

To Find :–

  • How many square metres of metal sheet would be needed to make it ?

Solution :–

  • h = 1m = 100cm
  • Capacity = 15.4 litre

Volume = 15.4 × 1000 cm³ [1 lit. = 1000 cm³]

πr²h = 15400.0 cm³

 \sf \frac{22}{7} × r² × 100 = 15400

r² =  \sf \frac{ \cancel{154} \cancel{00} \times 7}{ \cancel{22} \times 1 \cancel{00}}

r² = (7)²

r = 7cm

Required metal sheet :–

→ T.S.A. of cylinder.

→ 2πr(r + h)

→ 2 ×  \sf \frac{22}{\cancel{7}} ×  \cancel{7} (7 + 100)

→ 44 (107)

→ 4708 cm²

 \sf \frac{4708}{100 \times 100}

 \sf \frac{4,708}{10,000}

0.4708m²

Answered by aruanu1815
5

Answer:

\huge{\underline{\sf{\green{Solution-}}}}

\underline\green{\sf Given -}

\longrightarrow \sf{h = 1m}

\longrightarrow \sf{Volume = 15.4 l}

\underline\green{\sf Find -} TSA?

___________________________________

Volume of Cylinder = \huge{\underline{\sf{\green{\pi{r}^{2}h}}}}

\longrightarrow \sf{\pi{r}^{2}h \: = \: 1.54\times1000}

\longrightarrow \sf{= \dfrac{22}{7}\times{r}^{2}\times(100) = 1.54\times1000}

\longrightarrow \sf{{r}^{2} = \dfrac{1.54 \: \times \: 1000 \: \times 7} {22 \: \times 100}}

\longrightarrow \sf{{r}^{2}= 49}

\longrightarrow \sf{r = \sqrt{49}}

\longrightarrow \sf\green{r = 7cm}

___________________________________

TSA of cylinder = \huge{\underline{\sf{\green{2 \pi r(r+h)}}}}

\longrightarrow \sf{=2\times\dfrac{22}{7}(7+100)}

\longrightarrow \sf{=44\times107}

\longrightarrow \sf\green{= 4708{cm}^{2}}

 : 4708{cm}^{2} = ?{m}{2}

\longrightarrow \sf{\dfrac{4708}{100\times100}{m}^{2}}

\longrightarrow \sf\green{ = 0.4708{m}^{2}}

___________________________________

Similar questions