Math, asked by sophieasaha1, 3 months ago

the capacity of a cylindrical jar is 550 litres of water . If the height of the jar is 28 decimetre , what is it's diameter​

Answers

Answered by mathdude500
4

Given :-

  • Capacity of cylindrical jar = 550 litres

  • Height of cylindrical jar = 28 dm

To Find :-

  • Diameter of cylindrical jar.

Formula Used :-

\purple{\boxed{ \bf \:Volume_{(Cylinder)} = \pi \:  {r}^{2}h}}

\purple{\boxed{ \bf \:1 \: litre \:  =  \: 1 \:  {dm}^{3}}}

\purple{\boxed{ \bf \:diameter \:  =  \: 2 \times radius}}

Solution :-

Given that

\rm :\longmapsto\:Volume_{(Cylindrical \: jar)} = 550 \: litres = 550 \:  {dm}^{3}

\rm :\longmapsto\:Height_{(Cylindrical \: jar)}, \: h \:  =  \: 28 \: dm

Let radius of cylindrical jar = 'r' dm

Now,

Using,

\rm :\longmapsto\:Volume_{(Cylindrical \: jar)} = \pi \:  {r}^{2}h

\rm :\longmapsto\:  \red{\cancel{550}}  \:  \: ^{25}  = \dfrac{ \red{ \cancel{22}}}{ \cancel7} \times  {r}^{2} \times  \cancel{28}  \:  \: ^{4}

\rm :\longmapsto\: {r}^{2} = \dfrac{25}{4}

\rm :\implies\:r = \dfrac{5}{2}  \: dm

So,

\bf :\longmapsto\:Diameter_{(Cylindrical \: jar)}, \: d \:  =  \: 2r \: = 5 \:  dm

Additional Information :-

\boxed{ \sf{ \: TSA{(cone)} = {6(edge)}^{2} }}

\boxed{ \sf{ \: TSA{(cuboid)} = 2(lb + bh + hl)}}

\boxed{ \sf{ \: TSA{(cone)} = \pi \: r(l + r)}}

\boxed{ \sf{ \: TSA{(cylinder)} = 2\pi \: r(h + r)}}

\boxed{ \sf{ \: CSA{(cube)} = 4 \times {(edge)}^{2} }}

\boxed{ \sf{ \: CSA{(cone)} = \pi \: rl}}

\boxed{ \sf{ \: CSA{(cuboid)} = 2(l + b) \times h}}

\boxed{ \sf{ \: CSA{(cylinder)} = 2\pi \: rh}}

\boxed{ \sf{ \: Volume_{(cube)} = {(edge)}^{3} }}

\boxed{ \sf{ \: Volume_{(cuboid)} = lbh}}

\boxed{ \sf{ \: Volume_{(cone)} = \dfrac{1}{3} \pi \: {r}^{2} h}}

\boxed{ \sf{ \: Volume_{(sphere)} = \dfrac{4}{3} \pi \: {r}^{3} }}

Similar questions