Math, asked by mahakudchinmay6256, 1 year ago

The cartesian equation of a line is \frac{x-5}{3} = \frac{y+4}{7}=\frac{z-6}{2}. Write its vector form.

Answers

Answered by luciianorenato
0

Answer:

The line can be represented bu the cartesian equation

l:(1, \frac{7}{3}, \frac{2}{3})\lambda+(0,-\frac{47}{3}, -\frac{8}{3})

Step-by-step explanation:

Let's write y in funtion of x. Note that

\frac{x-5}{3} = \frac{y+4}{7} \Rightarrow y = \frac{7x-35}{3}-4 = \frac{7}{3}x-\frac{47}{3}

Now, writing z in function of x, we get

\frac{x-5}{3} = \frac{z-6}{2} \Rightarrow z = \frac{2x-10}{3}+6 = \frac{2}{3}x-\frac{8}{3}

Letting x = \lambda, the line can be represented bu the cartesian equation

l: (\lambda, \frac{7}{3}\lambda-\frac{47}{3}, \frac{2}{3}\lambda-\frac{8}{3}) = (1, \frac{7}{3}, \frac{2}{3})\lambda+(0,-\frac{47}{3}, -\frac{8}{3})

Answered by pulakmath007
13

\displaystyle\huge\red{\underline{\underline{Solution}}}

GIVEN

The cartesian equation of a line is

 \displaystyle \sf{ \frac{x - 5}{3}   =  \frac{y  + 4}{7} =  \frac{z - 6}{2} \: }

TO DETERMINE

The vector form of the line

CALCULATION

The given equation of the line is

 \displaystyle \sf{ \frac{x - 5}{3}   =  \frac{y  + 4}{7} =  \frac{z - 6}{2} \: } =  \lambda \:  \: (say)

Which gives

 \sf{ x = 5 + 3 \lambda\: }

 \sf{ y =  - 4+ 7 \lambda\: }

 \sf{ z = 6 + 2 \lambda\: }

So the vector equation of the line is

 \sf{ \vec{r}  = x \:  \hat{i} +  y \:  \hat{j} \:  +   z \:  \hat{k}\: }

 \implies \:  \sf{ \vec{r}  = (5 + 3 \lambda) \:  \hat{i} +   ( - 4 + 7 \lambda)  \:  \hat{j} \:  +    (6 + 2 \lambda)  \:  \hat{k}\: }

 \implies \:  \sf{ \vec{r}  = (5  \:  \hat{i} - 4 \:  \hat{j} \:  + 6  \:  \hat{k}\: ) +  \: ( 3 \lambda\:  \hat{i}  + 7 \lambda \:  \hat{j} \:   + 2 \lambda)  \:  \hat{k}\: }

 \therefore\sf{ \vec{r}  = (5  \:  \hat{i} - 4 \:  \hat{j} \:  + 6  \:  \hat{k}\: ) +  \:\lambda  ( 3  \hat{i}  + 7 \:  \hat{j} \:   + 2   \:  \hat{k}\: )}

RESULT

The required vector equation of the given line is

 \boxed{\sf{  \:  \: \vec{r}  = (5  \:  \hat{i} - 4 \:  \hat{j} \:  + 6  \:  \hat{k}\: ) +  \:\lambda  ( 3  \hat{i}  + 7 \:  \hat{j} \:   + 2   \:  \hat{k}\: ) \:  \: }}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the direction cosines of a line which makes equal angles with the coordinate axes

https://brainly.in/question/1508288

Similar questions