Math, asked by raupya, 1 year ago

The central angle of a sector of a circle is 2/7 radian and it's radius is 7cm. What is it's area in sq. Cm?

Answers

Answered by demon2001
4
2/7 radian
area of sector= {(angle of sector)/2π}π r2
= {(2/7)/(22/7)}*π 7²
= (1/11)*(22/7)(49)=14 cm2
Answered by wifilethbridge
0

Answer:

7 square cm.

Step-by-step explanation:

Given : The central angle of a sector of a circle is 2/7 radian and it's radius is 7cm.

To Find: What is it's area in sq. Cm?

Solution:

Central angle of a sector of a circle is 2/7 radian

Radius = 7 cm

Area of sector \theta in radians = \frac{1}{2} r^{2} \theta

                                                                    = \frac{1}{2} \times 7^{2} \times \frac{2}{7}

                                                                    = \frac{1}{2} \times49 \times \frac{2}{7}

                                                                    = 49 \times \frac{1}{7}

                                                                    = 7 cm^2

Hence the area of sector is 7 square cm.

Similar questions