Math, asked by jramesh1, 9 months ago

The centre of a circle is (2a – 1, 7) and it passes through the point (-3, -1). If the diameter of the circle is 20 units, then find the value of a

Answers

Answered by prince5132
68

GIVEN :-

  • Centre of Circle = (2a - 1 , 7)
  • Point on the Circle = (-3 , -1)
  • Diameter of Circle = 20 units.

TO FIND :-

  • The Value of a.

SOLUTION :-

From the question we have, The centre of the circle (2a - 1 , 7) passes through the point (-3 , -1). Hence The distance between the centre and the point will be equal to the radius.

Diameter (AB) = 20 units.

Radius (OA) = 20/2 = 10 units.

Now by using Distance Formula,

\mapsto \sf \: OA  = \sqrt{(x_{2} - x_{1})^{2} + (y_{2} - y_{1})^{2}}

Here ,

➔ x2 = 2a - 1

➔ x1 = -3

➔ y2 = 7

➔ y1 = -1.

Now substitute the above values ,

\mapsto \sf 10 =\sqrt{ \{2a - 1 - ( - 3) ^{2}  \} +  \{7 - ( - 1)  \}^{2}  }  \\  \\  \mapsto \sf  10 =  \sqrt{(2a - 1 + 3) ^{2} + (7 + 1) ^{2}  }  \\  \\  \mapsto \sf 10 =  \sqrt{(2a + 2) ^{2} + (8) ^{2}  }  \\  \\ \mapsto \sf 10 =  \sqrt{4a ^{2} + 4 + 8a + 64 } \\  \\  \mapsto \sf 10 ^{2}  = 4a ^{2}  + 4 + 8a + 64 \\  \\ \mapsto \sf 100 = 4a ^{2}  + 4 + 8a + 64 \\  \\ \mapsto \sf 4a ^{2}  + 4 + 8a + 64 - 100 = 0 \\  \\ \mapsto \sf 4a ^{2}  + 4 + 8a - 36= 0 \\  \\  \mapsto \sf 4a ^{2}  +  8a \:  - 32 = 0

By splitting the middle term ,

 \mapsto \sf 4a ^{2}  + 16a - 8a - 32 = 0 \\  \\  \mapsto \sf \: 4a(a + 4) - 8(a + 4) = 0 \\  \\ \mapsto \sf(4a - 8)(a + 4) = 0 \\  \\ \mapsto \sf \: 4a - 8 = 0 \: , \: a + 4 = 0 \\  \\  \mapsto \sf \: 4a = 8 \: , \: a =  - 4 \\  \\  \mapsto \underline { \boxed{ \red{\sf \: a = 2\: , \: a =  - 4}}}

❑ Hence a = 2 , -4

Attachments:
Answered by Anonymous
28

Given ,

The centre of the circle is(2a - 1, 7)

The circle passes through the point (-3 ,-1)

The diameter of the circle is 20 units

So ,

Radius (r) = 20/2 = 10 units

Now , the standard equation of circle is given by

 \boxed{  \tt{{(r)}^{2}  =  {(x - h)}^{2}  +  {(y - k)}^{2} }}

Where ,

  • r = radius
  • (h , k) = center of circle
  • (x , y) = any point on circle

Thus ,

 \tt \implies {(10)}^{2}  =  {( - 3 -  \{2a - 1 \})}^{2}  +  {( - 1 - 7)}^{2}

 \tt \implies  100 =  {(2a - 2)}^{2}  +  {( - 8)}^{2}

 \tt \implies 100 = 4 {(a)}^{2}  + 4 - 8a + 64

 \tt \implies 32 = 4 {(a)}^{2}  - 8a

 \tt \implies 4 {(a)}^{2}  - 8a - 32 = 0

  \tt \implies {(a)}^{2} - 2a - 8 = 0

 \tt \implies  {(a)}^{2} - 4a +2a - 8 = 0

 \tt \implies a(a - 4) + 2(a - 4) = 0

 \tt \implies a =  -2  \:  \: or \:  \:  a = 4

The value of a will be -2 or 4


mysticd: 100 = (2a+2)² + (-8)² please edit
Similar questions