Math, asked by Queen564, 6 months ago


The centre of a circle is at O. AB and CD are two chords
of length d and respectively. If P is the mid point of CD,
then the length 《OP》 is:

●●●Hey please give a step by step explanation!!!●●●​

Attachments:

Answers

Answered by BʀᴀɪɴʟʏAʙCᴅ
3

  • CP = \bf{\dfrac{l}{2}}

\huge\mathcal{\boxed{\fcolorbox{lime}{orange}{SOLUTION}}} \\

\sf{\implies\:(OP)^2\:=\:\Big(\dfrac{d}{2}\Big)^2\:-\:\Big(\dfrac{1}{2}\Big)^2\:} \\

\sf{\implies\:(OP)^2\:=\:\dfrac{d^2}{4}\:-\:\dfrac{l^2}{4}\:} \\

\sf{\implies\:(OP)^2\:=\:\dfrac{d^2\:-\:l^2}{4}\:} \\

\sf\green{\implies\:OP\:=\:\dfrac{\sqrt{d^2\:-\:l^2}}{2}\:} \\

✔️ Plz mark as Brainliest Answer....

Attachments:
Answered by Anonymous
7
  • CP = \bf{\dfrac{l}{2}}

\huge\mathcal{\boxed{\fcolorbox{lime}{orange}{SOLUTION}}} \\

\sf{\implies\:(OP)^2\:=\:\Big(\dfrac{d}{2}\Big)^2\:-\:\Big(\dfrac{1}{2}\Big)^2\:} \\

\sf{\implies\:(OP)^2\:=\:\dfrac{d^2}{4}\:-\:\dfrac{l^2}{4}\:} \\

\sf{\implies\:(OP)^2\:=\:\dfrac{d^2\:-\:l^2}{4}\:} \\

\sf\green{\implies\:OP\:=\:\dfrac{\sqrt{d^2\:-\:l^2}}{2}\:} \\

✔️ Plz mark as Brainliest Answer....

Attachments:
Similar questions