The centre of the circle 3x² + 3y2 +6x-12y-1=0 is d
a) (1, -3)
b) (-1,3)
c) (-1,2)
Answers
Answered by
12
Answer:
Answer is (-1,2)
Step-by-step explanation:
Comparing with the general eqn
ax^+ay^+2gx+2fy+c=0
Here a=3, 2g=6 | g=3 ,2f=-12 | f=-6 ,c=-1
Center = (-g/a,-f/a) =(-3/3,6/3)
=(-1,2)
Answered by
0
The center of the circle 3x² + 3y2 +6x-12y-1=0 is (-1,3). (Option b)
Given:
3x² + 3y² +6x-12y-1=0
To Find:
Center of the circle
Solution:
Given equation of the circle 3x² + 3y² +6x-12y-1=0
Divide eq by 3.
⇒x² + y² +2x-4y-1/3=0
Now comparing the equation with general eq of circle x² + y² +2gx+2fy+c=0
Center of the circle is (-g,-f)
2g=2 then g= 1
and 2f= -6 then f= -3
Therefore, the center of the circle 3x² + 3y2 +6x-12y-1=0 is (-1,3).
#SPJ3
Similar questions