the centre of the circle which passes through the focus of the parabola X^2=4y and touches it at the point (6,9) is
Answers
∴equation of circle is (x - h)² + (y - r)² =
A/C to question,
Circle passing through focus and touches at the point (6,9) of parabola x² = 4y
focus of parabola is (0,1)
so, (0,1) will satisfy the equation of circle ,
∴ (0 - h)² + (1 - k)² = r² -----(1)
Again, (6, 9) will satisfy the equation of circle ,
∴(6 - h)² + (9 - k)² = r² ------(2)
From equations (1) and (2),
-2k + 1 = -12h + 36 - 18k + 81
⇒16k + 12h = 116
⇒4h + 3h = 29 ------(3)
at (6,9) slope of tangent if circle = slope of tangent of parabola [because at (6,9) circle touches the parabola ]
slope of circle :
differentiate equation of circle with respect to x
2(x - h) + 2(y - k)dy/dx = 0
⇒ dy/dx = -(x - h)/(y - k)
At (6,9) slope of tangent of circle is dy/dx = -(6 -h)/(9 - k)
Slope of parabola :
x² = 4y, differentiate with respect to x
2x = 4dy/dx
⇒dy/dx = x/2
At (6,9) slope of tangent of parabola is dy/dx = 6/2 = 3
Hence, 3 = -(6 - h)/(9 - k)
⇒3(9 - k) + (6 - h) = 0
⇒ 27 - 3k + 6 - h = 0
⇒ 3k + h = 33 -------(4)
Solve equation (3) and (4) ,
h = -9 and k = 14
so, r² = (6 +9)² + (9 - 14)² = 225 + 25 = 250
Hence, equation of circle is (x + 9)² + (y - 14)² = 250
⇒x² + y² + 18x - 28y + 81 + 196 = 250
⇒x² + y² + 18x - 28y + 27 = 0
Hence, answer is x² + y² + 18x - 28y + 27 = 0
▆ ▇ █ ⓈⓄⓁⓊⓉⒾⓄⓃ █ ▇ ▆
ʟᴇᴛ ᴄᴇɴᴛʀᴇ ᴏꜰ ᴄɪʀᴄʟᴇ ɪꜱ (ʜ, ʀ) ᴀɴᴅ ʀᴀᴅɪᴜꜱ ᴏꜰ ᴄɪʀᴄʟᴇ ɪꜱ ʀ
∴ᴇQᴜᴀᴛɪᴏɴ ᴏꜰ ᴄɪʀᴄʟᴇ ɪꜱ (x - ʜ)² + (ʏ - ʀ)² =
ᴀ/ᴄ ᴛᴏ Qᴜᴇꜱᴛɪᴏɴ,
ᴄɪʀᴄʟᴇ ᴘᴀꜱꜱɪɴɢ ᴛʜʀᴏᴜɢʜ ꜰᴏᴄᴜꜱ ᴀɴᴅ ᴛᴏᴜᴄʜᴇꜱ ᴀᴛ ᴛʜᴇ ᴘᴏɪɴᴛ (6,9) ᴏꜰ ᴘᴀʀᴀʙᴏʟᴀ x² = 4ʏ
ꜰᴏᴄᴜꜱ ᴏꜰ ᴘᴀʀᴀʙᴏʟᴀ ɪꜱ (0,1)
ꜱᴏ, (0,1) ᴡɪʟʟ ꜱᴀᴛɪꜱꜰʏ ᴛʜᴇ ᴇQᴜᴀᴛɪᴏɴ ᴏꜰ ᴄɪʀᴄʟᴇ ,
∴ (0 - ʜ)² + (1 - ᴋ)² = ʀ² -----(1)
ᴀɢᴀɪɴ, (6, 9) ᴡɪʟʟ ꜱᴀᴛɪꜱꜰʏ ᴛʜᴇ ᴇQᴜᴀᴛɪᴏɴ ᴏꜰ ᴄɪʀᴄʟᴇ ,
∴(6 - ʜ)² + (9 - ᴋ)² = ʀ² ------(2)
ꜰʀᴏᴍ ᴇQᴜᴀᴛɪᴏɴꜱ (1) ᴀɴᴅ (2),
-2ᴋ + 1 = -12ʜ + 36 - 18ᴋ + 81
⇒16ᴋ + 12ʜ = 116
⇒4ʜ + 3ʜ = 29 ------(3)
ᴀᴛ (6,9) ꜱʟᴏᴘᴇ ᴏꜰ ᴛᴀɴɢᴇɴᴛ ɪꜰ ᴄɪʀᴄʟᴇ = ꜱʟᴏᴘᴇ ᴏꜰ ᴛᴀɴɢᴇɴᴛ ᴏꜰ ᴘᴀʀᴀʙᴏʟᴀ [ʙᴇᴄᴀᴜꜱᴇ ᴀᴛ (6,9) ᴄɪʀᴄʟᴇ ᴛᴏᴜᴄʜᴇꜱ ᴛʜᴇ ᴘᴀʀᴀʙᴏʟᴀ ]
ꜱʟᴏᴘᴇ ᴏꜰ ᴄɪʀᴄʟᴇ :
ᴅɪꜰꜰᴇʀᴇɴᴛɪᴀᴛᴇ ᴇQᴜᴀᴛɪᴏɴ ᴏꜰ ᴄɪʀᴄʟᴇ ᴡɪᴛʜ ʀᴇꜱᴘᴇᴄᴛ ᴛᴏ x
2(x - ʜ) + 2(ʏ - ᴋ)ᴅʏ/ᴅx = 0
⇒ ᴅʏ/ᴅx = -(x - ʜ)/(ʏ - ᴋ)
ᴀᴛ (6,9) ꜱʟᴏᴘᴇ ᴏꜰ ᴛᴀɴɢᴇɴᴛ ᴏꜰ ᴄɪʀᴄʟᴇ ɪꜱ ᴅʏ/ᴅx = -(6 -ʜ)/(9 - ᴋ)
ꜱʟᴏᴘᴇ ᴏꜰ ᴘᴀʀᴀʙᴏʟᴀ :
x² = 4ʏ, ᴅɪꜰꜰᴇʀᴇɴᴛɪᴀᴛᴇ ᴡɪᴛʜ ʀᴇꜱᴘᴇᴄᴛ ᴛᴏ x
2x = 4ᴅʏ/ᴅx
⇒ᴅʏ/ᴅx = x/2
ᴀᴛ (6,9) ꜱʟᴏᴘᴇ ᴏꜰ ᴛᴀɴɢᴇɴᴛ ᴏꜰ ᴘᴀʀᴀʙᴏʟᴀ ɪꜱ ᴅʏ/ᴅx = 6/2 = 3
ʜᴇɴᴄᴇ, 3 = -(6 - ʜ)/(9 - ᴋ)
⇒3(9 - ᴋ) + (6 - ʜ) = 0
⇒ 27 - 3ᴋ + 6 - ʜ = 0
⇒ 3ᴋ + ʜ = 33 -------(4)
ꜱᴏʟᴠᴇ ᴇQᴜᴀᴛɪᴏɴ (3) ᴀɴᴅ (4) ,
ʜ = -9 ᴀɴᴅ ᴋ = 14
ꜱᴏ, ʀ² = (6 +9)² + (9 - 14)² = 225 + 25 = 250
ʜᴇɴᴄᴇ, ᴇQᴜᴀᴛɪᴏɴ ᴏꜰ ᴄɪʀᴄʟᴇ ɪꜱ (x + 9)² + (ʏ - 14)² = 250
⇒x² + ʏ² + 18x - 28ʏ + 81 + 196 = 250
⇒x² + ʏ² + 18x - 28ʏ + 27 = 0
ʜᴇɴᴄᴇ, ᴀɴꜱᴡᴇʀ ɪꜱ x² + ʏ² + 18x - 28ʏ + 27 = 0