Math, asked by gurmejsingh77, 11 months ago

the centroid of triangle whose vertices are (4,-3),(-9,7)and (8,8)is​

Answers

Answered by sonu7170
1

Answer:

centroid of triangle

=[(4-9+8)/3,(-3-9+8)/3]

=[3/3,-4/3]

=(1,-4/3)

Step-by-step explanation:

I hope it will help you.

Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Centroid(G)=}(1,4)}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{ \underline \bold{Given : }} \\ : \implies \text{Coordinate \: of \: A = (4,-3)} \\ \\ : \implies \text{Coordinate \: of \: B = (-9,7)} \\ \\ : \implies \text{Coordinate \: of \: C = (8,8)} \\ \\ \red{ \underline \bold{To \: Find : }} \\ : \implies \text{Centroid(G) = ?}

• According to given question :

 \bold{As \: we \: know \: that} \\ \circ \: \text{Centroid \: of \: triangle(G}) \\ \\ \circ \: \text{For \: x }= \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ \circ \: \text{For \: y} = \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ \text{Let \: Coordinate \: of \: (g) =( x,y) } \\ \\ \bold{For \: x}\\ : \implies x = \frac{ x_{1} + x_{2} + x_{3} }{3} \\ \\ : \implies x = \frac{4+(-9) + 8}{3} \\ \\ : \implies x = \frac{3}{3} \\ \\ \green{: \implies x =1} \\ \\ \bold{For \: y}\\ : \implies y= \frac{ y_{1} + y_{2} + y_{3} }{3} \\ \\ : \implies y= \frac{-3+7+8}{3} \\ \\ : \implies y = \frac{12}{3} \\ \\ \green{: \implies y =4} \\ \\ \green{\therefore \text{Coordinate \: of \: centroid(G) = }(1,4)}

Similar questions