the changes in atmosphere produces change in ______________ and __________
Answers
Answered by
6
the changes in atmosphere produces change in weather and climate
Answered by
2
Changes in the Chemistry of the Atmosphere
SUMMARY
Within the atmospheric chemistry component of the U.S. Global Change Research Program there is a well-defined science focus with a track record of dealing with public policy implications. Development and implementation of the Montreal Protocol rested on a solid scientific foundation, realized through a strong international network of scientists and, within the United States, a multiagency effort led by the National Aeronautics and Space Administration (NASA). In fact, the model of an international, integrated, and periodically repeated assessment was largely formed from the United Nations Environment Programme/World Meteorological Organization Ozone Assessments. Moreover, this research area has a rich history of interaction with the human dimension components at fine spatial scales, as a natural consequence of air pollution studies and policies. Current developments in atmospheric chemistry are revealing the close links between chemistry, radiation, dynamics, and climate. Examples include the powerful role played by aerosol formation in both the boundary layer and the upper troposphere, chemical initiation of subvisible cirrus in the region of the tropopause, the control exerted by water vapor and temperature on the sharply nonlinear partitioning of halogen and hydrogen radicals in the lower stratosphere, and the importance of stratosphere-troposphere exchange on the composition and meteorology of the upper troposphere and lower stratosphere.
by changing concentrations and depositions of harmful and beneficial compounds.
SUMMARY
Within the atmospheric chemistry component of the U.S. Global Change Research Program there is a well-defined science focus with a track record of dealing with public policy implications. Development and implementation of the Montreal Protocol rested on a solid scientific foundation, realized through a strong international network of scientists and, within the United States, a multiagency effort led by the National Aeronautics and Space Administration (NASA). In fact, the model of an international, integrated, and periodically repeated assessment was largely formed from the United Nations Environment Programme/World Meteorological Organization Ozone Assessments. Moreover, this research area has a rich history of interaction with the human dimension components at fine spatial scales, as a natural consequence of air pollution studies and policies. Current developments in atmospheric chemistry are revealing the close links between chemistry, radiation, dynamics, and climate. Examples include the powerful role played by aerosol formation in both the boundary layer and the upper troposphere, chemical initiation of subvisible cirrus in the region of the tropopause, the control exerted by water vapor and temperature on the sharply nonlinear partitioning of halogen and hydrogen radicals in the lower stratosphere, and the importance of stratosphere-troposphere exchange on the composition and meteorology of the upper troposphere and lower stratosphere.
by changing concentrations and depositions of harmful and beneficial compounds.
Similar questions